Solid-State Synthesis and Thiophanate Methyl Visible Light Degradation of Magnesium Doped TiO2 Mesoporous Nanomaterial

Article Preview

Abstract:

Mg-doped TiO2 mesoporous nanomaterial with high-efficiency solar photoelectric conversion was successfully prepared by a solid-state reaction using cetyltrimethyl ammonium bromide as a template agent. As-prepared Mg-TiO2 nanomaterials are characterized with XRD、SEM, UV-Vis, XPS, BET and Raman spectroscopy. It was found that magnesium as Mg2+ incorporates into the framework of TiO2 by isomorphous replacement with content of 2.36%. The Mg-TiO2 nanoparticles are anatase phase with particle size of 10-24nm. The rod-like nanoparticles have specific surface area of 104.5m2 /g and pore-diameter distribution centre of 5.1 nm. The surface of Mg-TiO2 material with stretching vibrational peak at 1105cm1 is assignable to the Mg-O-Ti bond. Furthermore, the UV–vis displays that the absorption region of mesoporous Mg-TiO2 powder shifts to 405nm, and the absorption intensity of the visible-light region is enhancement. At 20oC, pH = 6.8, c0 = 50 mg/L, within 150 min, the rule of pseudo-second-order reaction and the degradation rate of thiophanate methyl of 57% and 91.8% corresponding visible-light irradiation and ultraviolet irradiation are obtained for the Mg-TiO2 nanomaterial. But it is poor to photodegradation of thiophanate methyl for P25-TiO2, and it keeps to the rule of pseudo-first-order reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-27

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tomkiewicz, Scaling Properties in Photocatalysis, Catalysis Today, 58 (2000)151-159.

Google Scholar

[2] M. H. Zhang, S. W. Ding, Z. X. Wang, Sn doped nano-TiO2 mesoporous materials synthesized by Chemical self-assembly and its photocatalytic property, Science in China Ser: B Chemistry (in Chinese), 35 (2005)206-211.

Google Scholar

[3] D. Chen, D. Yang, Q. Wang, Z. Jiang, Effects of boron doping on photocatalytic activity and micro- structure of titaium dioxide nanoparticles, Ind. Eng. Chem. Res., 45(2006)4110-4116.

DOI: 10.1021/ie0600902

Google Scholar

[4] S. Y. Liu, Q. L. Tang, Q. G. Feng. Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route, Applied Surface Science, 257 (2011) 5544-5551.

DOI: 10.1016/j.apsusc.2011.01.033

Google Scholar

[5] S. Y. Liu, G. C. Liu, Q. G. Feng. Al-doped TiO2 mesoporous materials: synthesis and photo- degradation properties, J. Porous Mater., 17(2010):197–206.

DOI: 10.1007/s10934-009-9281-8

Google Scholar

[6] S. Y. Liu, L. D. Wu, Z. X. Zhao, Synthesis of Ni-doped TiO2 mesoporous material via solid- state reaction at low temperature and its kinetics of methyl orange photodegradation, Journal of Inorganic Materials (in Chinese), 24(2009)902-908.

DOI: 10.3724/sp.j.1077.2009.00902

Google Scholar

[7] W. J. Zhang, B. Yang. Preparation and photocatalytic property of B doped TiO2 photocatalyst, Materials Research Transaction, 26(2012)149-154.

Google Scholar

[8] T. Siva Rao, T. Abdo Segne, T. Susmitha, Photocatalytic degradation of dichlorvos in visible light by Mg2+-TiO2 nanocatalyst, Advances in Materials Science and Engineering, 2012.

DOI: 10.1155/2012/168780

Google Scholar

[9] L. D. Wu, S. Y. Liu, W. H. Tang, Solid phase synthesis and photogegradation O-nitrophenol of Sr doped TiO2 mesoporous material.Fine Chemical (in Chinese), 29(2012)751-756.

Google Scholar

[10] Y. Ide, N. Kawamoto, Y. Bando, Ternary modified TiO2 as simple and efficient photocatalyst for green organic synthesis, Chem. Commun., 2013, DOI: 10.1039/ C3CC41174E.

DOI: 10.1039/c3cc41174e

Google Scholar

[11] X. B. Chen, S. S. Mao. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev., 107 (2007)2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[12] T. H. De Keijser, E. J. Mettemeijer, H. C. F. Rozendall, Determination of crystallite-size and lattice- strain parameters in conjunction with the profile-refinement method of the determination of crystal structures, J. Appl. Crystallogr., 16(1983)309- 316.

DOI: 10.1107/s0021889883010493

Google Scholar

[13] R. J. Tayade, R. G. Kulkarni, R. V. Jasra. Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water, Ind. Eng. Chem. Res., 45 (2006) 5231 -5238.

DOI: 10.1021/ie051362o

Google Scholar

[14] K. Nagaveni, M. S. Hegde, G. Madras, Structure and photocatalytic activity of Ti1-xMxO2 (M= W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method, J. Phys. Chem. B, 108(2004) 20204-20212.

DOI: 10.1021/jp047917v

Google Scholar

[15] J. C. Yu, J. Z. Zhang, J. C. Zhao. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity, Chem. Mater, 15(2003)2280- 2286.

DOI: 10.1021/cm0340781

Google Scholar

[16] J. I. Hubert, A. K. Vasudevan, G. Aruldhas, FTIR as a tool to study high-temperature phase formation in sol-gel aluminium titanate, J. Solid State Chem., 131(1997)181- 184.

DOI: 10.1006/jssc.1997.7371

Google Scholar

[17] W. Choi, A. Termin, M. R. Hoffmann. The Role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge-carrier recombination dynamics, J. Phys. Chem., 98(1994)13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[18] M. C. Wu, J. S. Corneille, C. A. Estrada, Synthesis and characterization of ultra-thin MgO films on Mo (100), Chem.Phys. Lett., 182(1991) 472-478.

DOI: 10.1016/0009-2614(91)90110-u

Google Scholar

[19] X. B. Chen, S. H. Shen, L. J. Guo, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010)6503–6570.

DOI: 10.1021/cr1001645

Google Scholar

[20] J. C. Yu, G. S. Li, X. C. Wang, An ordered cubic Im3m mesoporous Cr-TiO2 visible light photocatalyst, Chem Commun, (2006) 2717-2719.

DOI: 10.1039/b603456j

Google Scholar

[21] Q. T. Zhang. Base on Inorganic materials science. Shanghai: East China University of Science and Technology press, 2007.

Google Scholar

[22] Y. C. Tang, C. Hu, Y. Z. Wang. Research progress in TiO2 photocatalytic reaction mechanism and kinetics, Progress in Chemistry, 14 (2002) 192-199.

Google Scholar