Preparation of 1D or 3D Nano ZnO Crystals in High-Viscosity Solvent

Article Preview

Abstract:

1D or 3D nanoZnO crystals were prepared in diethylene glycol (DEG) via solvothermal process without surfactants at 160oC. Zinc acetate dihydrate was elected as zinc source, while water, sodium hydroxide, or ammonia solution was respectively as assistant agents. The morphologies of the products were characterized by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). With a certain content of water or sodium hydroxide, 1D ZnO nanorods were gained, having diameters of 20-90 nm and lengths of 0.04-1.8μm. With a certain content of ammonia solution, 3D shiitake-like ZnO hierarchical structures were gained. The pileus of shiitake structure composes of nanorods with diameters of 35-40 nm, while the stipe composes of one hexagonal rod with diameters of 250-350nm, or many hexagonal rods with diameters of 100-200nm. The morphology and size could be regulated by changing the amount of water, NaOH, or ammonia solution. Solvothermal process in high-viscosity solvent may provide a facile method for preparing nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-43

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, Prog. Mater. Sci. 52(2007) 699-913.

Google Scholar

[2] L. Tang, S. Yang, Y. Guo, B. Zhou, Chem. Eng. J. 165(2010) 370-377.

Google Scholar

[3] W.W. Lee, J. Yi, S.B. Kim, Y.-H. Kim, H.-G. Park, W.I. Park, Cryst. Growth Des. 11(2011) 4927-4932.

Google Scholar

[4] J. Elias, C. Levy-Clement, M. Bechelany, J. Michler, G.Y. Wang, Z. Wang, L. Philippe, Adv. Mater. 22(2010) 1607-1612.

DOI: 10.1002/adma.200903098

Google Scholar

[5] P. Zhu, J. Zhang, Z. Wu, Z. Zhang, Cryst. Growth Des. 8(2008) 3148-3153.

Google Scholar

[6] H.I. Abdulgafour, Z. Hassan, N. Al-Hardan, F.K. Yam, Physica B. 405(2010) 2570-2572.

DOI: 10.1016/j.physb.2010.03.033

Google Scholar

[7] C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S.F. Yu, J. Zhang, H. Gong, H. Sun, H.J. Fan, ACS Nano. 3(2009) 3069-3076.

Google Scholar

[8] L. Xu, Q. Chen, D. Xu, J. Phys. Chem. C. 111(2007) 11560-11565.

Google Scholar

[9] N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Cantwell, D.B. Eason, D.C. Reynolds, D.C. Look, Appl. Phys. Lett. 80(2002) 1334-1336.

DOI: 10.1063/1.1450041

Google Scholar

[10] Z. Hu, G. Oskam, P.C. Searson, J. Colloid Interf. Sci. 263(2003) 454-460.

Google Scholar

[11] L. Xu, Y.-L. Hu, C. Pelligra, C.-H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, Chem. Mater. 21(2009) 2875-2885.

DOI: 10.1021/cm900608d

Google Scholar

[12] J.-S. Lee, S.-C. Choi, J. Eur. Ceram. Soc. 25(2005) 3307-3314.

Google Scholar

[13] S. Kunjara Na Ayudhya, P. Tonto, O. Mekasuwandumrong, V. Pavarajarn, P. Praserthdam, Cryst. Growth Des. 6(2006) 2446-2450.

DOI: 10.1021/cg050345z

Google Scholar

[14] M. Rezapour, N. Talebian, Mater. Chem. Phys. 129(2011) 249-255.

Google Scholar

[15] Y.W. Jun, J.S. Choi, J. Cheon, Angew. Chem. Int. Edit. 45(2006) 3414-3439.

Google Scholar

[16] D. Jezequel, J. Guenot, N. Jouini, F. Fievet, Mater. Sci. Forum. 152-153(1994) 339-342.

DOI: 10.4028/www.scientific.net/msf.152-153.339

Google Scholar

[17] Y.Y. Tay, S. Li, F. Boey, Y.H. Cheng, M.H. Liang, Physica B. 394(2007) 372-376.

Google Scholar

[18] Y. Hu, H.-J. Chen, J. Nanopart. Res. 10(2007) 401-407.

Google Scholar

[19] K.X. Yao, R. Sinclair, H.C. Zeng, J. Phys. Chem. C. 111(2007) 2032-2039.

Google Scholar

[20] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem. Mater. 14(2002) 4172-4177.

Google Scholar

[21] P. Gu, X. Wang, T. Li, H. Yu, H. Meng, Cryst. Res. Technol. 48(2013) 985-995.

Google Scholar