[1]
A. Greiner, J. H. Wendorff, Functional Self-Assembled Nanofibers by Electrospin -ning, Adv. Polym. Sci. 219 (2008) 107-171.
Google Scholar
[2]
W. H. Shi, C. R. Zhao, D. Jin, The applications of electrospinning technique in the Biomedical Materials Field, Chin. Med. Dev. Inform. 12 (2006) 17-22.
Google Scholar
[3]
A. K. Moghe, B. S. Gupta, Co-axial Electrospinning for Nanofiber Structures: Preparation and Applications, Polym. Rev. 48 (2008) 353-377.
DOI: 10.1080/15583720802022257
Google Scholar
[4]
J. D. Schiffman, C. L. Schauer, A Review:Electrospinning of Biopolymer Nanofibers and their Applications, Polym. Rev. 48 (2008) 317-352.
DOI: 10.1080/15583720802022182
Google Scholar
[5]
M. M. Li, H. X. Yin, Y. Z. Long, Preparation of ZrOCl2/PVA Composite Nanofibres by Electrospinning, J. Qingdao University (Natural Science Edition) 21 (2008) 46-48.
Google Scholar
[6]
Y. Z. Long, M. M. Li, Z. H. Zhang, Recent Advance in Fabrication of Aligned Nanofibers via Electrospinning, J. Qingdao University (Natural Science Edition) 21 (2008) 92-99.
Google Scholar
[7]
J. S. Tan, Y. Z. Long, M. M. Li. Preparation of aligned polymer micro/nanofibers by electrospinning, Chin. Phys. Lett. 25 (2008) 3067-3070.
Google Scholar
[8]
D. Li, G. Oyang, J. T. McCan, Y. Xia, Collecting electrospun nanofibers with patterned electrodes, Nano Lett. 5 (2005) 913-916.
DOI: 10.1021/nl0504235
Google Scholar
[9]
D. Li, Y. L. Wang, Y. N. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett. 3 (2003) 1167-1171.
DOI: 10.1021/nl0344256
Google Scholar
[10]
R. S. Barhate, S. Ramakrishna, Nanofibrous filtering media: filtration problems and solutions from tiny materials, J. Membr. Sci. 296 (2007) 1-8.
DOI: 10.1016/j.memsci.2007.03.038
Google Scholar
[11]
K. Zhang, X. F. Wang, D. Z. Jing, Y. Yang, M. F. Zhu, Bionic electrospun ultrafine fibrous poly(L-lactic acid) scaffolds with a multi-scale structure, Biomed. Mater. 4 (2009) 035004/1-6.
DOI: 10.1088/1748-6041/4/3/035004
Google Scholar
[12]
O. D. Schneider, F. Weber, T. J. Brunner, S. Loher, M. Ehrbar, P. R. Schmidlin, W. J. Stark, In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects, Acta Biomater. 5 (2009) 1775-1184.
DOI: 10.1016/j.actbio.2008.11.030
Google Scholar
[13]
Y. Ji, K. Ghosh, X. Z. Shu, B. Q. Li, J. C. Sokolov, G. D. Prestwich, R.A.F. Clark, M. H. Rafailovich, Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomater. 27 (2006) 3782-3792.
DOI: 10.1016/j.biomaterials.2006.02.037
Google Scholar
[14]
J. Nam, Y. Huang, S. Agarwal, J.Lannutti, Improved cellular infiltration in electrospun fiber via engineered porosity, Tissue Eng. 13 (2007) 2249-2257.
DOI: 10.1089/ten.2006.0306
Google Scholar
[15]
T. G. Kim, H. J. Chung, T. G. Park, Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, Acta Biomater. 4 (2008) 1611 -1619.
DOI: 10.1016/j.actbio.2008.06.008
Google Scholar
[16]
M. F. Leong, M. Z. Rasheed, T. C. Lim, K. S. Chian, In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique, J. Biomed. Mater. Res. 91A(1) (2009) 231-240.
DOI: 10.1002/jbm.a.32208
Google Scholar
[17]
M. Simonet, O. D. Schneider, P. Neuenschwander, W. J. Stark, Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template, Polym. Eng. Sci. 47 (2007) 2020-2026.
DOI: 10.1002/pen.20914
Google Scholar