The Effect of Bacterial Cellulose (BC) Fiber Content on the Properties of BC Fiber Reinforced Nanocomposites

Article Preview

Abstract:

Optically transparent nanocomposites were prepared by epoxy resin reinforced with bacterial cellulose nanofibers in volume fraction from 2.6 to 32.7wt%. The transparence, surface smoothness, thermal expansion and mechanic properties of the nanocomposites with different BC fiber content were characterized. It was found that the nanocomposites display high visible light transparence (84% at 600nm) even at high fiber content (32.7 wt%). The coefficient of planar thermal expansion (CTE) was reduced from 83.8 ppm/K (Epoxy resin) to 40.6 ppm/K at low fiber content (2.6 wt%). The high transparence was insensitive to the change of temperature from room temperature to 90 oC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-269

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li. X., Chen. S., Hu. W., Shi. S., Shen. W., Zhang. X., Wang. H. In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydrate Polymers, 2009,76, 509-512.

DOI: 10.1016/j.carbpol.2008.11.014

Google Scholar

[2] Caseri. W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromolecular Rapid Communication, 2000,21, 705–722.

DOI: 10.1002/1521-3927(20000701)21:11<705::aid-marc705>3.0.co;2-3

Google Scholar

[3] Yano. H., Sugiyama. J., Nakagito. A. N., et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Advance materials, 2005, 17(2) 153-155.

DOI: 10.1002/adma.200400597

Google Scholar

[4] Nogi. M., Handa. K., Nakagaito. A. N., Yano. H. Applied Physics Letter, 2005, 87, 243110.

Google Scholar

[5] Gelin. K., Bodin. A., Gatenholm. P., Mihranyan. A., Edwards. K., Strømme. M. Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer, 2007, 48(26), 7623–7631.

DOI: 10.1016/j.polymer.2007.10.039

Google Scholar

[6] Takashi. N., Ikuyo. M., Koichi. H., All-Cellulose Composite, Macromolecules 2004, 37, 7683-7687.

Google Scholar

[7] Nogi. M., Yano. H. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Advance Material, 2008, 20, 1849–1852

DOI: 10.1002/adma.200702559

Google Scholar

[8] Ifuku. S, Nogi. M. , Abe. K, Handa. K., Nakatsubo. F., Yano. H. Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites: Dependence on Acetyl-Group DS. Biomacromolecules, 2007, 8, 1973-1978.

DOI: 10.1021/bm070113b

Google Scholar

[9] Ummartyotin. S., Juntarob. J., Sain. M., Manuspiya. H., Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Industrial Crops and Products, 2012, 35, 92– 97.

DOI: 10.1016/j.indcrop.2011.06.025

Google Scholar

[10] Choi, M., Kim, Y., Ha, C.S., Polymers for flexible displays from material selection to device applications. Prog. Polym. Sci. 33, 581–630.

DOI: 10.1016/j.progpolymsci.2007.11.004

Google Scholar

[11] Bergstroèm. L., Stemme. S., Dahlfors. T., Arwin. H., Oèdber. L., Spectroscopic ellipsometry characterisation and estimation of the Hamaker constant of cellulose. Cellulose, 1999, 6, 1-13.

Google Scholar

[12] Nogi. M, Ifuku. S., Abe. K., Handa. K., Nakagaito. A. N., Yano. H. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Applied Physics Letter, 2006, 88, 133124.

DOI: 10.1063/1.2191667

Google Scholar