[1]
A. Hidouci, J. M. Pelletier, F. Ducoin, D. Dezert, R. EI Guerjouma, Microstructural and Mechanical Characteristics of Laser Coatings, Surf. Coat. Technol. 123 (2000) 17-23.
DOI: 10.1016/s0257-8972(99)00394-1
Google Scholar
[2]
N. Sorensen, R. Diegle, Corrosion of amorphous metals, Metals Handbook: corrosion 13 (1987) 864 -870.
Google Scholar
[3]
D. Polk and B. Giessen, Metallic Glasses, ASME (1978) 2-35.
Google Scholar
[4]
K. Hashimoto and M. Froment, Passivity of Metals and Semiconductors, Elsevier Science Publishers, Amsterdam (1983).
Google Scholar
[5]
S. Virtanen, H. Bohni, Passivity, breakdown and repassivation of glassy Fe-Cr-P alloys, Corros. Sci. 31 (1990) 333 -342.
DOI: 10.1016/0010-938x(90)90128-r
Google Scholar
[6]
C. S. Kiminami, C. A. C. Souza, L. F. Bonavina, L. R. P. de Andrade Lima, S. Suriñach, M. D. Baró, C. Bolfarini, W. J. Botta, Partial crystallization and corrosion resistance of amorphous Fe-Cr-M-B (M=Mo, Nb) alloys, J. No-Cryst. Solids. 356 (2010) 2651-2657.
DOI: 10.1016/j.jnoncrysol.2010.04.051
Google Scholar
[7]
X. Wu, B. Xu, Y. Hong, Synthesis of thick Ni66Cr5Mo4Zr6P15B4 amorphous alloy coating and large glass-forming ability by laser cladding, Mater. Lett. 56 (2002) 838-841.
DOI: 10.1016/s0167-577x(02)00624-9
Google Scholar
[8]
X. L. Zhang, G.Y. Sun, G. Chen, Improving the strength and the toughness of Mg-based bulk metallic glass by Bridgman solidification, Mater. Sci. Eng. 564 (2013) 158-162.
DOI: 10.1016/j.msea.2012.11.111
Google Scholar
[9]
S. Pang, T. Zhang and H. Kimura, Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glassy alloys, Mater. Trans. 41(2000) 1490-1494.
DOI: 10.2320/matertrans1989.41.1490
Google Scholar
[10]
H. J. Wang, G. J. Shiflet, S. J. Poon, The role of Y/lanthanides on the glass forming ability of amorphous steel, Appl. Phys. Lett. 91(2007) 141910.
DOI: 10.1063/1.2786598
Google Scholar
[11]
W. Q. Hu, Z. D. Liu, Y. T. Wang, Z. S. Li, Comparison study of the Fe-based composite coating prepared by different processes, Adv. Mater. Res. 154 (2011) 1575-1580.
DOI: 10.4028/www.scientific.net/amr.154-155.1575
Google Scholar
[12]
J. B. Cheng, X. B. Liang, B. S. Xu. Y. X. Wu, Formation and properties Fe-based amorphous/nanocrystalline coating prepared by wire arc spraying process, J. No-Cryst. Solids. 355 (2009) 1673-1678.
DOI: 10.1016/j.jnoncrysol.2009.06.024
Google Scholar
[13]
A. H. Dent, A. J. Horlock, D. G. McCartney, S. J. Harris, Microstructural characterisation of a Ni-Cr-B-C based alloy coating produced by high velocity oxy-fuel thermal spraying, Surf. Coat. Technol. 139 (2001) 244-250.
DOI: 10.1016/s0257-8972(01)00996-3
Google Scholar
[14]
A. Kobayashi, S. Yano, H. Kimura, A. Inoue, Fe-based metallic glass coatings produced by smart plasma spraying process, Mater. Sci. Eng. 148 (2008) 110-113.
DOI: 10.1016/j.mseb.2007.09.035
Google Scholar
[15]
G. Jandin, H. Liao, Z. Q. Feng, C. Coddet, Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings, Mater. Sci. Eng. 349 (2003) 298-305.
DOI: 10.1016/s0921-5093(02)00767-0
Google Scholar
[16]
G. Y. Liang and T. T. Wong, Microstructure and character of laser remelting of plasma sprayed coating (Ni-Cr-B-Si) on Al-Si alloy, Surf. Coat. Technol. 89 (1997) 121-126.
DOI: 10.1016/s0257-8972(96)02932-5
Google Scholar
[17]
K. Hashimoto, Chemical properties [amorphous alloys], edited by F. E. Luborsky, Amorphous metallic alloys (1983).
DOI: 10.1016/b978-0-408-11030-3.50006-6
Google Scholar
[18]
Z. B. Zheng, Y. G. Zheng, W. H. Sun, J. Q. Wang, Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution, Corr. Sci. 76 (2013) 337-347.
DOI: 10.1016/j.corsci.2013.07.006
Google Scholar
[19]
A. Ibañez, E. Fatás, Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters, Surf. Coat. Technol. 191 (2005) 7-16.
DOI: 10.1016/j.surfcoat.2004.05.001
Google Scholar
[20]
Z. M. Wang, J. Zhang, X. C. Chang, W. L. Hou, J. Q. Wang, Structure inhibited pit initiation in a Ni-Nb metallic glass, Corros. Sci. 52 (2010) 1342-1350.
DOI: 10.1016/j.corsci.2009.12.014
Google Scholar
[21]
S. D. Zhang, Z. M. Wang, X. C. Chang, Identifying the role of nanoscale heterogeneities in pitting behaviour of Al-based metallic glass, Corros. Sci. 53 (2011) 3007-3015.
DOI: 10.1016/j.corsci.2011.05.047
Google Scholar
[22]
Q. Y. Wang, Y. F. Zhang, S. L. Bai, Z. D. Liu, Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding, J. Alloy. Compd. 553 (2013) 253-258.
DOI: 10.1016/j.jallcom.2012.10.193
Google Scholar
[23]
W. C. Johnson, P. Zhou, A. M. Lucente, J. R. Scully, Composition Profiles around Solute-Lean, Spherical Nanocrystalline Precipitates in an Amorphous Matrix: Implications for Corrosion Resistance, Metall. Mater. Trans. 40 (2009) 757-767.
DOI: 10.1007/s11661-008-9759-z
Google Scholar
[24]
K. Asami, B. P. Zhang, M. Mehmood, H. Habazaki, K. Hashimoto, Effects of nanoscale heterogeneity on the corrosion behavior of non-equilibrium alloys, Scripta Mater. 44 (2001) 1655-1658.
DOI: 10.1016/s1359-6462(01)00879-x
Google Scholar
[25]
A. P. Wang, X. C. Chang, W. L. Hou, Corrosion behavior of Ni-based amorphous alloys and their crystalline counterparts, Corros. Sci. 49 (2007) 2628-2635.
DOI: 10.1016/j.corsci.2006.12.017
Google Scholar
[26]
Z. M. Wang, Y. T. Ma and J. Zhang, Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses, Electrochim. Acta 54 (2008) 261-269.
DOI: 10.1016/j.electacta.2008.08.017
Google Scholar
[27]
V. Cremaschi, I. Avram, T. Perez, Electrochemical studies of amorphous, nanocrystalline, and crystalline FeSiB based alloys, Scripta Mater. 46 (2002) 95-100.
DOI: 10.1016/s1359-6462(01)01204-0
Google Scholar
[28]
C. A. C. Sousa, C. S. Kiminami, Crystallization and corrosion resistance of amorphous FeCuNbSiB, J. No-Cryst. Solids. 219 (1997) 155-159.
DOI: 10.1016/s0022-3093(97)00323-2
Google Scholar
[29]
A. M. Lucente, J. R. Scully, Pitting and alkaline dissolution of an amorphous-nanocrystalline alloy with solute-lean nanocrystals Corros. Sci. 49 (2007) 2351-2361.
DOI: 10.1016/j.corsci.2006.10.015
Google Scholar