Influence of Laser Remelting on the Corrosion Resistance of Fe-Based Amorphous Composite Coatings

Article Preview

Abstract:

The microstructure and corrosion resistance of Fe-based amorphous coatings prepared by laser remelting after arc spraying were studied. The laser remelting process was carried out under different energy inputs, and the processing parameters varied with the different currents, pulse widths and scanning speeds. The corrosion behavior of the coatings in 1 mol/L NaCl solution was studied through potentiodynamic and potentiostatic polarization test. The morphology and microstructure of the coatings were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical analyzer. A Vickers hardness tester was also used to measure the microhardness of the coatings. The analysis of the microstructure shows that the amorphous coatings are composed of amorphous matrix and nanocrystalline phases. The diffusion of elements indicates a metallurgical bonding between the coating and substrate. The electrochemical corrosion results obtained from the Tafel polarization curves verify that the amorphous composite coatings prepared by different methods show no significant differences in their corrosion resistance, while the microhardness of laser remelting coatings increase obviously with the increase of laser currents. The corrosion resistance of laser remelting coatings is improved extensively due to the amorphous matrix and embedded nanocrystals, which popularizes the applications of amorphous coatings to a large extent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-78

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hidouci, J. M. Pelletier, F. Ducoin, D. Dezert, R. EI Guerjouma, Microstructural and Mechanical Characteristics of Laser Coatings, Surf. Coat. Technol. 123 (2000) 17-23.

DOI: 10.1016/s0257-8972(99)00394-1

Google Scholar

[2] N. Sorensen, R. Diegle, Corrosion of amorphous metals, Metals Handbook: corrosion 13 (1987) 864 -870.

Google Scholar

[3] D. Polk and B. Giessen, Metallic Glasses, ASME (1978) 2-35.

Google Scholar

[4] K. Hashimoto and M. Froment, Passivity of Metals and Semiconductors, Elsevier Science Publishers, Amsterdam (1983).

Google Scholar

[5] S. Virtanen, H. Bohni, Passivity, breakdown and repassivation of glassy Fe-Cr-P alloys, Corros. Sci. 31 (1990) 333 -342.

DOI: 10.1016/0010-938x(90)90128-r

Google Scholar

[6] C. S. Kiminami, C. A. C. Souza, L. F. Bonavina, L. R. P. de Andrade Lima, S. Suriñach, M. D. Baró, C. Bolfarini, W. J. Botta, Partial crystallization and corrosion resistance of amorphous Fe-Cr-M-B (M=Mo, Nb) alloys, J. No-Cryst. Solids. 356 (2010) 2651-2657.

DOI: 10.1016/j.jnoncrysol.2010.04.051

Google Scholar

[7] X. Wu, B. Xu, Y. Hong, Synthesis of thick Ni66Cr5Mo4Zr6P15B4 amorphous alloy coating and large glass-forming ability by laser cladding, Mater. Lett. 56 (2002) 838-841.

DOI: 10.1016/s0167-577x(02)00624-9

Google Scholar

[8] X. L. Zhang, G.Y. Sun, G. Chen, Improving the strength and the toughness of Mg-based bulk metallic glass by Bridgman solidification, Mater. Sci. Eng. 564 (2013) 158-162.

DOI: 10.1016/j.msea.2012.11.111

Google Scholar

[9] S. Pang, T. Zhang and H. Kimura, Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glassy alloys, Mater. Trans. 41(2000) 1490-1494.

DOI: 10.2320/matertrans1989.41.1490

Google Scholar

[10] H. J. Wang, G. J. Shiflet, S. J. Poon, The role of Y/lanthanides on the glass forming ability of amorphous steel, Appl. Phys. Lett. 91(2007) 141910.

DOI: 10.1063/1.2786598

Google Scholar

[11] W. Q. Hu, Z. D. Liu, Y. T. Wang, Z. S. Li, Comparison study of the Fe-based composite coating prepared by different processes, Adv. Mater. Res. 154 (2011) 1575-1580.

DOI: 10.4028/www.scientific.net/amr.154-155.1575

Google Scholar

[12] J. B. Cheng, X. B. Liang, B. S. Xu. Y. X. Wu, Formation and properties Fe-based amorphous/nanocrystalline coating prepared by wire arc spraying process, J. No-Cryst. Solids. 355 (2009) 1673-1678.

DOI: 10.1016/j.jnoncrysol.2009.06.024

Google Scholar

[13] A. H. Dent, A. J. Horlock, D. G. McCartney, S. J. Harris, Microstructural characterisation of a Ni-Cr-B-C based alloy coating produced by high velocity oxy-fuel thermal spraying, Surf. Coat. Technol. 139 (2001) 244-250.

DOI: 10.1016/s0257-8972(01)00996-3

Google Scholar

[14] A. Kobayashi, S. Yano, H. Kimura, A. Inoue, Fe-based metallic glass coatings produced by smart plasma spraying process, Mater. Sci. Eng. 148 (2008) 110-113.

DOI: 10.1016/j.mseb.2007.09.035

Google Scholar

[15] G. Jandin, H. Liao, Z. Q. Feng, C. Coddet, Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings, Mater. Sci. Eng. 349 (2003) 298-305.

DOI: 10.1016/s0921-5093(02)00767-0

Google Scholar

[16] G. Y. Liang and T. T. Wong, Microstructure and character of laser remelting of plasma sprayed coating (Ni-Cr-B-Si) on Al-Si alloy, Surf. Coat. Technol. 89 (1997) 121-126.

DOI: 10.1016/s0257-8972(96)02932-5

Google Scholar

[17] K. Hashimoto, Chemical properties [amorphous alloys], edited by F. E. Luborsky, Amorphous metallic alloys (1983).

DOI: 10.1016/b978-0-408-11030-3.50006-6

Google Scholar

[18] Z. B. Zheng, Y. G. Zheng, W. H. Sun, J. Q. Wang, Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution, Corr. Sci. 76 (2013) 337-347.

DOI: 10.1016/j.corsci.2013.07.006

Google Scholar

[19] A. Ibañez, E. Fatás, Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters, Surf. Coat. Technol. 191 (2005) 7-16.

DOI: 10.1016/j.surfcoat.2004.05.001

Google Scholar

[20] Z. M. Wang, J. Zhang, X. C. Chang, W. L. Hou, J. Q. Wang, Structure inhibited pit initiation in a Ni-Nb metallic glass, Corros. Sci. 52 (2010) 1342-1350.

DOI: 10.1016/j.corsci.2009.12.014

Google Scholar

[21] S. D. Zhang, Z. M. Wang, X. C. Chang, Identifying the role of nanoscale heterogeneities in pitting behaviour of Al-based metallic glass, Corros. Sci. 53 (2011) 3007-3015.

DOI: 10.1016/j.corsci.2011.05.047

Google Scholar

[22] Q. Y. Wang, Y. F. Zhang, S. L. Bai, Z. D. Liu, Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding, J. Alloy. Compd. 553 (2013) 253-258.

DOI: 10.1016/j.jallcom.2012.10.193

Google Scholar

[23] W. C. Johnson, P. Zhou, A. M. Lucente, J. R. Scully, Composition Profiles around Solute-Lean, Spherical Nanocrystalline Precipitates in an Amorphous Matrix: Implications for Corrosion Resistance, Metall. Mater. Trans. 40 (2009) 757-767.

DOI: 10.1007/s11661-008-9759-z

Google Scholar

[24] K. Asami, B. P. Zhang, M. Mehmood, H. Habazaki, K. Hashimoto, Effects of nanoscale heterogeneity on the corrosion behavior of non-equilibrium alloys, Scripta Mater. 44 (2001) 1655-1658.

DOI: 10.1016/s1359-6462(01)00879-x

Google Scholar

[25] A. P. Wang, X. C. Chang, W. L. Hou, Corrosion behavior of Ni-based amorphous alloys and their crystalline counterparts, Corros. Sci. 49 (2007) 2628-2635.

DOI: 10.1016/j.corsci.2006.12.017

Google Scholar

[26] Z. M. Wang, Y. T. Ma and J. Zhang, Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses, Electrochim. Acta 54 (2008) 261-269.

DOI: 10.1016/j.electacta.2008.08.017

Google Scholar

[27] V. Cremaschi, I. Avram, T. Perez, Electrochemical studies of amorphous, nanocrystalline, and crystalline FeSiB based alloys, Scripta Mater. 46 (2002) 95-100.

DOI: 10.1016/s1359-6462(01)01204-0

Google Scholar

[28] C. A. C. Sousa, C. S. Kiminami, Crystallization and corrosion resistance of amorphous FeCuNbSiB, J. No-Cryst. Solids. 219 (1997) 155-159.

DOI: 10.1016/s0022-3093(97)00323-2

Google Scholar

[29] A. M. Lucente, J. R. Scully, Pitting and alkaline dissolution of an amorphous-nanocrystalline alloy with solute-lean nanocrystals Corros. Sci. 49 (2007) 2351-2361.

DOI: 10.1016/j.corsci.2006.10.015

Google Scholar