[1]
D. Klemm, D. Schumann, F. Kramer, N. Heβler, M. Hornung, H.P. Schmauder, S. March, Nanocelluloses as innovative polymers in research and application, Adv. Polym. Sci. 205 (2006) 49-96.
DOI: 10.1007/12_097
Google Scholar
[2]
N. Heβler and D. Klemm, Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives, Cellulose. 16 (2009) 899-910.
DOI: 10.1007/s10570-009-9301-5
Google Scholar
[3]
D. Klemm, B. Heublein, H.P. Fink and A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. 44 (2005) 3358-3393.
DOI: 10.1002/anie.200460587
Google Scholar
[4]
P. Ross, R. Mayer and M. Benziman, Cellulose biosynthesis and function in bacteria, Microbiol. Rev. 55 (1991) 35-38+IIA.
DOI: 10.1128/mr.55.1.35-58.1991
Google Scholar
[5]
C. H. Haigler, A. R. White, R. M. Jr. Brown, K.M. Cooper, Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives, J. Cell. Biol. 94 (1982) 64-69.
DOI: 10.1083/jcb.94.1.64
Google Scholar
[6]
S. Suzuki, A. Hirai, F. Horii, Formation and structure of the complexes of sub-elementary fibrils of bacterial cellulose with fluorescent brightener molecules, Cellulose. 19 (2012) 1607-1618.
DOI: 10.1007/s10570-012-9756-7
Google Scholar
[7]
H.C. Huang, L.C. Chen, S.B. Lin, C.P. Hsu, H.H. Chen, In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation, Bioresour. Techno. 101 (2010) 6084-6091.
DOI: 10.1016/j.biortech.2010.03.031
Google Scholar
[8]
H.H. Chen, L.C. Chen, H.C. Huang, S.B. Lin, In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus, Cellulose. 18 (2011) 1573-1583.
DOI: 10.1007/s10570-011-9594-z
Google Scholar
[9]
R.H. Atalla, D.L. Vanderhart, Native Cellulose: A Composite of Two Distinct Crystalline Forms, Science 223 (1984) 283-285.
DOI: 10.1126/science.223.4633.283
Google Scholar
[10]
L. Seagal, J.J. Creely, A.E.J. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer, Text. Res. J. 29 (1959) 786-794.
DOI: 10.1177/004051755902901003
Google Scholar
[11]
Y. Marechal, H. Chanzy, The hydrogen bond network in I(β) cellulose as observed by infrared spectrometry, J. Mol. Struc. 523 (2000) 183-196.
DOI: 10.1016/s0022-2860(99)00389-0
Google Scholar
[12]
W. Czaja, D. Romanovicz, R.M. Brown Jr., Molecular interactions in bacterial cellulose produced in stationary and agitated culture, Cellulose. 11 (2004) 403-411.
DOI: 10.1023/b:cell.0000046412.11983.61
Google Scholar
[13]
R.M. Musampa, M.M. Alves, J.M. Maria, Phase separation, rheology and microstructure of pea protein-kappa-carrageenan mixtures, Food. Hydrocoll. 21 (2007) 92-99.
DOI: 10.1016/j.foodhyd.2006.02.005
Google Scholar