Microstructure and Phase Evolution of Ni2FeGa Heusler Alloy Extended to Different Degrees of Undercooling

Article Preview

Abstract:

The Ni2FeGa Heusler alloy is synthesized by arc melting in argon atmosphere. It shows two phase microstructure, γ-phase ( disordered fcc ) and Austenite ( ordered bcc, L21 ). Phase identification and microstructural characterization were carried out using XRD, SEM and TEM. Solidification at various undercoolings upto 215 °C was performed using flux undercooling technique. B2O3 was used as the flux that provides an inert atmosphere and isolates the molten pool from the quartz tube. The solidified microstructure of the undercooled samples were analyzed and the result indicates γ-phase to be the primary phase to form. The samples are also textured. XRD patterns indicate different texture at different undercoolings. Possible mechanisms for such changes will be discussed. The competitive nucleation mechanism can not also be ruled out as the SEM micrographs show the globular morphology of γ-phase likely due to defragmentation of primary dendrites. Thermal analysis by DSC shows incongruent melting of Ni2FeGa Heusler alloy which strengthen the argument of poor nucleation ability of L21 ordered intermetallic austenite phase as compared to primary γ-phase. Up to achieved undercooling limits, γ-phase forms as the primary phase competitively with the L21 ordered phase. Studies indicate that competitive nucleation mechanism is a likely mechanism to explain the phase selection.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

199-204

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic field induced strain in NiMnGa seven layered martensitic phase, Appl. Phys. Let. 80 (2002) 1746 - 1748.

DOI: 10.1063/1.1458075

Google Scholar

[2] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nature Materials. 11 (2012) 620 - 626.

DOI: 10.1038/nmat3334

Google Scholar

[3] S. J. Murray, M. A. Marioni, A. M. Kukla, J. Robinson, R. C. O'Handley, S. M. Allen, Large field induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy, J. Appl. Phys. 87 (2000) 5774 - 5776.

DOI: 10.1063/1.372518

Google Scholar

[4] J. Pons, E. Cesari, C. Segui, F. Masdeu, R. Santamarta, Ferromagnetic shape memory alloy: Alternatives to Ni-Mn-Ga, Mat. Sc. and Engg. A. 481-482 (2008) 57 - 65.

DOI: 10.1016/j.msea.2007.02.152

Google Scholar

[5] R. V. S. Prasad, M. M. Raja, G. Phanikumar, Microstructure and magnetic properties of rapidly solidified Ni2(Mn, Fe)Ga Heusler alloys, Adv. Mat. Res. 74 (2009) 215 - 218.

DOI: 10.4028/www.scientific.net/amr.74.215

Google Scholar

[6] K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, K. Ishida, Magnetic and martensitic phase transitions in ferromagnetic Ni-Ga-Fe shape memory alloys, Appl. Phys. Let. 81 (2002) 5201 - 5203.

DOI: 10.1063/1.1532105

Google Scholar

[7] R. V. S. Prasad, G. Phanikumar, Phase evolution and properties of Ni50Co23Fe2Ga25 Heusler alloy undercooled by electromagnetic levitation, Intermetallics. 19 (2010) 1705 - 1710.

DOI: 10.1016/j.intermet.2011.07.009

Google Scholar

[8] S. Dwivedi, B. Tiwari, Martensitic transformation and magnetocaloric effect in Sn-doped NiMnIn shape memory alloy, J. of Alloys and Compound. 540 (2012) 16 - 20.

DOI: 10.1016/j.jallcom.2012.06.057

Google Scholar

[9] V. K. Sharma, M. K. Chattopadhyaya, R. Kumar, T. Ganguli, P. Tiwari, S. B. Roy, Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16, J. Phys. Conds. Matter. 19 (2007) 496207 1 - 12.

Google Scholar

[10] R. Das, S. Sarma, A. Perumal, A. Srinivasan, Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy, J. Appl. Phys. 109 (2011) 07A901 1 - 3.

DOI: 10.1063/1.3540327

Google Scholar

[11] R. Kainuma, H. Nakano, K. Ishida, Martensitic transformations in NiMnAl β phase alloys, Metall. Trans. A 27 (1996) 4153 - 4162.

DOI: 10.1007/bf02595663

Google Scholar

[12] Y. Kishi, Z. Yajima, K. Shimizu, T. Okazaki, Y. Furuya, M. Wuttig, Phase transformation behavior and microstructures of rapidly solidified Co-Ni-Ga alloys, Mat. Sc. Engg. A. 438-440 (2006) 965 - 969.

DOI: 10.1016/j.msea.2005.12.049

Google Scholar

[13] T. Kakeshita, T. Fukuda, Giant magnetostriction in Fe3Pt and FePd ferromagnetic shape memory alloys, Mat. Sc. Forum. 394-395 (2002) 531 - 536.

DOI: 10.4028/www.scientific.net/msf.394-395.531

Google Scholar

[14] K. Koho, O. Soderberg, N. Lanska, Y. Ge, X. Liu, L. Straka, J. Vimpari, O. Heczo, V. K. Lindroos, Effect of the chemical composition to martensitic transformation in Ni-Mn-Ga-Fe alloys, Mat. Sc. Engg. A. 378 (2004) 384 - 388.

DOI: 10.1016/j.msea.2003.10.363

Google Scholar

[15] D. M. Herlach, Non equilibrium solidification of undercooled metallic melts, Mat. Sc. Engg. R12 (1994) 177 - 272.

Google Scholar

[16] O. Funke, G. Phanikumar, P.K. Galenko, L. Chernova, S. Reutzel, M. Kolbe, D. M. Herlach, Dendrite growth vel. in levitated undercooled nickel melts, J. crys. Growth. 297 (2006) 211-222.

DOI: 10.1016/j.jcrysgro.2006.08.045

Google Scholar

[17] J. Gao, T. Volkmann, D. M. Herlach, Undercooling dependent solidification behavior of levitated Nd14Fe79B7 alloy droplets, Acta Materialia. 50 (2002) 3003-30012.

DOI: 10.1016/s1359-6454(02)00128-3

Google Scholar

[18] G. Phanikumar, K. Biswas, O. Funke, D. H. Moritz, D. M. Herlach, K. Chattopadhyaya, Solidification of undercooled peritectic Fe-Ge alloy, Acta Materialia. 53 (2005) 3591 - 3600.

DOI: 10.1016/j.actamat.2005.03.053

Google Scholar

[19] R. Ducher, R. Kainuma, K. Ishida, Phase equilibria in the Ni-Fe-Ga alloy system, J. of Alloys and Compounds. 463 (2008) 213 - 219.

DOI: 10.1016/j.jallcom.2007.09.079

Google Scholar

[20] F. Chen, X. L. Meng, W. Cai, L. C. Zhao, G. H. Wu, Martensitic transformation and shape memory effect of the Ni-Fe-Ga polycrystalline alloy, J. Magn. Mag. Materials. 302 (2006) 459 - 362.

DOI: 10.1016/j.jmmm.2005.10.015

Google Scholar

[21] P. J. Webster, Magnetic and chemical order in Heusler alloys containing Cobalt and Manganese, J. Phys. Chem. Solids Pergamon Press. 32 (1971) 1221 - 1231.

DOI: 10.1016/s0022-3697(71)80180-4

Google Scholar

[22] B. D. Cullity, Elements of X-ray diffraction, Addison-Wesley Publishing Comp., (2001).

Google Scholar

[23] K. Oikawa, T. Omori, Y. Sutou, H. Morito, R. Kainuma, K. Ishida, Phase equilibria and phase transition of the Ni-Fe-Ga ferromagnetic shape memory alloy system, Met. and Mat. Trans. A. 38A (2007) 767 - 776.

DOI: 10.1007/s11661-007-9095-8

Google Scholar

[24] W. Ma, H. Zheng, M. Xia, J. Li, Undercooling and solidification behavior of Fe – 20 at. % Ga alloys, J. of Alloys and Compounds. 379 (2004) 188 - 192.

DOI: 10.1016/j.jallcom.2004.02.021

Google Scholar

[25] L. J. Swartzendruber et al. Binary alloys phase diagrams, II Ed., 2 (1990) 1735 - 1738.

Google Scholar

[26] H. X. Zheng, M. X. Xia, J. Liu, J. G. Li, Martensitic transformation in highly undercooled Ni-Fe-Ga magnetic shape memory alloys, J. of Alloys and Comp. 388 (2005) 172 - 176.

DOI: 10.1016/j.jallcom.2004.07.028

Google Scholar

[27] G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, (1988).

Google Scholar

[28] J. Kubler, A. R. Williams, C. B. Sommers, Formation and coupling of magnetic moments in Heusler alloys, Phys. Rev. B. 28 (1983) 1745 - 1755.

DOI: 10.1103/physrevb.28.1745

Google Scholar