[1]
H.V. Atkinson, D. Liu, Microstructural coarsening of semi-solid aluminium alloys, Materials Science and Engineering: A 496 1-2 25 (2008) 439-446.
DOI: 10.1016/j.msea.2008.06.013
Google Scholar
[2]
Kliauga, A.M., Liquid formation and microstructural evolution during re-heating and partial melting of an extruded A356 aluminium alloy, Acta Materialia 53 (2005) 345-356.
DOI: 10.1016/j.actamat.2004.09.030
Google Scholar
[3]
Y. Birol, Semisolid processing of near-eutectic and hypereutectic Al-Si-Cu alloys, Journal of Materials Science 43 10 (2008) 3577–3581.
DOI: 10.1007/s10853-008-2565-6
Google Scholar
[4]
I. Peter, M. Rosso, C. Bivol, Microstructure and mechanical behaviour of Al-based alloy obtained by liquid forging technique, Metallurgia International, Vol. XIV Special Issue 2 (2009)15-19.
Google Scholar
[5]
Z. Fan, Semisolid metal processing, International Materials Reviews 47/ 2 (2002) 49–85.
Google Scholar
[6]
M. Rosso, I. Peter, R. Villa, Effects of T5 and T6 heat treatments applied to Rheocast A356 parts for automotive applications, Journal of Solid State Phenomena 141-143 (2008) 237-242.
DOI: 10.4028/www.scientific.net/ssp.141-143.237
Google Scholar
[7]
J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Materialia 61 (2013) 818–843.
DOI: 10.1016/j.actamat.2012.10.044
Google Scholar
[8]
E. Tillova, E. Durinkova, M. Chapulova, Structural analysis of secondary AlZn10Si8Mg cast alloy, Acta Metallurgica Slovaca 17/1 (2011) 4-10.
Google Scholar
[9]
E. Tillova, E. Durinkova, M. Chapulova, Properties of recycled AlZn10Si8 cast alloy after annealing, Materials Engineering - Materiálové inžinierstvo 18 (2011) 1-7.
Google Scholar
[10]
M. Azadi, M.M. Shirazabad, Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356. 0 aluminum alloy, Materials and Design 45 (2013) 279–285.
DOI: 10.1016/j.matdes.2012.08.066
Google Scholar
[11]
I. Aguilera Luna, H. Mancha Molinar, M.J. Castro Román, J.C. Escobedo Bocardo, M. Herrera Trejo, Improvement of the tensile properties of an Al–Si–Cu–Mg aluminum industrial alloy by using multi stage solution heat treatments, Materials Science & Engineering A 561 (2013).
DOI: 10.1016/j.msea.2012.10.064
Google Scholar
[12]
M. Savas, S. Altintas, The microstructural control of cast and mechanical properties of zinc-aluminium alloys, J. Materials Science 28 (1993) 1775-1780.
DOI: 10.1007/bf00595744
Google Scholar
[13]
Y. H. Zhu, Phase transformations of eutectoid Zn-Al alloys, J. Materials Science, 36 (2001) 3973-3980.
Google Scholar
[14]
Y. H. Zhu, K. C. Chan, G. K. H. Pang, T. M. Yue, W. B. Lee, Structural Changes of α Phase in Furnace Cooled Eutectoid Zn-Al Based Alloy, J. Mater. Sci. Technol., 23/3 (2007) 347-352.
Google Scholar
[15]
X. L. Xu, Z. W. Yu, S. J. Ji, J. C. Sun, Z. K. Hei, Differential Scanning calorimetry and X-ray diffraction studies on aging behavior of Zn-Al alloys, Acta Metallurgica Sinica, 14/2, (2001) 109-114.
Google Scholar
[16]
G. Torres-Villasenor, E. Martinez-Flores, Hybrid materials based on Zn-Al, Metal, Ceramic and Polymeric Composites for various uses, Published online 20 July 2011 http: /www. intechopen. com/books/metal-ceramic-and-polymeric-composites-forvarious-uses/hibrid-materials-based-on zn-al-alloys.
DOI: 10.5772/17241
Google Scholar
[17]
Y Wang, J Zeng: Eutectoid transformation in Zn alloy with high Al contant, in Advanced Materials Resarch, 652-654 (2013) 1111-1114.
DOI: 10.4028/www.scientific.net/amr.652-654.1111
Google Scholar
[18]
Y.H. Zhu, General rule of phase decomposition in Zn-Al based alloys(II)-on effects of external stresses on phase transformation, Materials Transactions, 45/11 (2004) 3083-3097.
DOI: 10.2320/matertrans.45.3083
Google Scholar
[19]
A. Sandoval-Jmenez, J. Negrete, G. Torres-Villasenor, Phase transformations in the Zn-Al eutectoid alloy after quenching from the high temperature triclinic beta phase, Materials characterization, 61 (2010) 1286-1289.
DOI: 10.1016/j.matchar.2010.07.014
Google Scholar
[20]
H. J. Dorantes-Rosales, V. M. Lopez-Hirata, J. Moreno-Palmerin, N. Cayetano-Castro, M. L. Saucedo-Munoz, A. A. Torres Castillo, β' phase decomposition in Zn-22 mass % Al and Zn-22 mass % Al-2 mass % Cu alloys at room temperature, Materials Transactions, 48/10 (2007).
DOI: 10.2320/matertrans.mrp2007058
Google Scholar
[21]
WEI JianNing, SONG ShiHua, HU KongGang, XIE WeiJun, MA MingLiang, LI GenMei, HAN FuSheng, Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy, Science in China Series G: Physics, Mechanics & Astronomy 52 (1) (2009).
DOI: 10.1007/s11433-009-0007-3
Google Scholar
[22]
B. Varga, I. Peter, Structural transformations in Zn-Al22 alloy solidified by ultra-rapid cooling, in Metalurgia International, XVII Special Issue 6 (2013) 9-12.
Google Scholar
[23]
I. Peter, B. Varga, M. Rosso: Dimensional stability analysis in Al-Si alloys, in Metalurgia International, XVI/4 (2011) 5-9.
Google Scholar
[24]
W. K. Krajewski, P. L. Zak, J. Orava, A. L. Greer, P.K. Krajewski, Structural stability of the high-aluminium zinc alloys modified with Ti addition, Archives of Foundry Engineering 12/1 (2012) 61-66.
DOI: 10.2478/v10266-012-0012-2
Google Scholar
[25]
B. Varga, I. Lichioiu, Method and installation for obtaining metastable structures of aluminium alloys, Bulletin of the Transilvania University of Brasov, Series I Engineering Sciences 4 53/1 (2011) 1-6.
Google Scholar
[26]
H. J. Dorantes-Rosales, V. M. Lopez-Hirata, J. L. Mendez-Velazquez, M. L. Saucedo-Munoz, D. Hernandez-Silva, Microstructure characterization of phase transformations in a Zn-22wt%Al-2wt%Cu alloy by XRD, SEM, TEM and FIM, Journal of Alloys and Compounds, 313 (2000).
DOI: 10.1016/s0925-8388(00)01206-8
Google Scholar
[27]
G. Texier, B. Oudot, C. Platteau, B. Ravat, F. Delaunay, Phase transformation in δ Pu alloys at low temperature: in situ dilatometric study, IOP Conf. Series Materials Science and Engineering 9 (2010) 1-8.
DOI: 10.1088/1757-899x/9/1/012033
Google Scholar