Design and Microstructure of Innovative Cobalt Base Alloy

Article Preview

Abstract:

Design and characterization of modified Cobalt base alloy for biological applications have been studied and compared. In particular, modification has been realized by addition of Mo, Ti and Zr to better fit the requirements for dental applications. On the samples morphological and surface analysis including residual stress determination have been considered. As a result of this study, a positive effect of Ti addition has been demonstrated. Contrarily, a simultaneous addition of Ti and Zr does not promote any enhancement as microstructure and properties concern.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

235-240

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kurella, N.B. Dahotre, , "Laser Induced Hierarchical Calcium Phosphate Structures, Acta Biomaterialia 2 (2006) 677-688.

DOI: 10.1016/j.actbio.2006.05.001

Google Scholar

[2] T. Kokubo, H.M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials 24 (2003) 2161–2175.

DOI: 10.1016/s0142-9612(03)00044-9

Google Scholar

[3] M. Sumita, T. Hanawa, S.H. Teoh, Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials, Materials Science and Engineering: C 24 (2004) 753-760.

DOI: 10.1016/j.msec.2004.08.030

Google Scholar

[4] Lucas LC, Dale P, Buchanan R, Goll Y, Griffin D, Lemons JE., In vitro vs. in vivo corrosion analyses of two alloys. J Invest Surg. 4(1) (1991) 13–21.

DOI: 10.3109/08941939109140757

Google Scholar

[5] Geis-Gerstorfer J, Sauer KH, Passler K., Ion release from Ni–Cr–Mo and Co–Cr–Mo casting alloys, Int J Prosthodont 4(2) (1991) 152–8.

Google Scholar

[6] Grimido NJ., Biocompatibility of nickel and cobalt dental alloys, Gen. Dent. 49(5) (2001) 498–503.

Google Scholar

[7] Dong H, Nagamatsu Y, Chen KK, Tajima K, Kakigawa H, Shi S, Kozono Y. , Corrosion behavior of dental alloys in various types of electrolyzed water, Dent. Mater. J. 22(4) (2003) 482–93.

DOI: 10.4012/dmj.22.482

Google Scholar

[8] A.G. Cobb, T.P. Schmalzreid, The clinical significance of metal ion release from cobalt–chromium metal-on-metal hip joint arthroplasty, Proc. Inst. Mech. Eng. H. 220 (2006) 385–398.

DOI: 10.1243/09544119jeim78

Google Scholar

[9] T. Hanawa, Metal ion release from metal implants, Mater. Sci. Eng. C. 24 (2004) 745–752.

Google Scholar

[10] J.J. Jacobs, J.L. Gilbert, M. Calvitti, R. M. Urban, Corrosion of metal orthopaedic implants J. Bone Joint Surg. 80A (1998) 268-282.

Google Scholar

[11] M. K. Lei, X.N. Zhu, In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels Biomaterials 2 (2001) 641-647.

DOI: 10.1016/s0142-9612(00)00226-x

Google Scholar

[12] M. Browne, P.J. Gregson, Surface modification of titanium alloy implants, Biomaterials 15 (1994) 894–898.

DOI: 10.1016/0142-9612(94)90113-9

Google Scholar

[13] A. Karaalia, K. Mirouh, S. Hamamda, P. Guiralden, Microstructural study of tungsten influence on Co–Cr alloys, Materials Science and Engineering A 390 (2005) 255–259.

DOI: 10.1016/j.msea.2004.08.001

Google Scholar

[14] Viswanathan S. SAJI, Han-Cheol Choe, Electrochemical behavior of Co-Cr and Ni-Cr dental cast alloys, Trans. Nonferrous Met. Soc. china 19 (2009) 785-790.

DOI: 10.1016/s1003-6326(08)60350-7

Google Scholar

[15] I. Peter, M. Rosso, A. Toppi, I. Dan, B. Ghiban, Investigation on Cobalt based alloy modified by Titanium for dental applications, Archives of Materials Science and Engineering 61 (2) (2013) 62-68.

Google Scholar

[17] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Minneapolis, MN, 1978, p.190.

Google Scholar

[18] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble Jr., NIST Standard Reference Database 20, Version 3. 4 (Web Version).

Google Scholar