[1]
T. Wang, S. Yao, X. Zhang, J. Jin, M. Wu, A. Ludwig, B. Pustal, A. Bührig-Polaczek, Modeling of the thermo-solutal convection, shrinkage flow, and grain movement during globular equiaxed solidification in a multi-phase system: I. Three-phase flow model, Acta Metall. Sinica 42 (2006).
DOI: 10.1179/136404605225022874
Google Scholar
[2]
T. Wang, T. Li, Z. Cao, J. Jin, T. Grimming, A. Bührig-Polaczek, M. Wu, A. Ludwig, Modeling of the thermo-solutal convection, shrinkage flow, and grain movement during globular equiaxed solidification in a multi-phase system: II. Application of model, Acta Metall. Sinica 42 (2006).
DOI: 10.1002/3527603506.ch23
Google Scholar
[3]
M. Wu, A. Ludwig, A three-phase model for mixed columnar-equiaxed solidification, Metall. Mat. Trans. A 37A (2006) 1613-1631.
DOI: 10.1007/s11661-006-0104-0
Google Scholar
[4]
M. Wu, A. Ludwig, Using three-phase deterministic model for the columnar-to-equiaxed transition, Metall. Mat. Trans. A 38A (2007) 1465-1475.
DOI: 10.1007/s11661-007-9175-9
Google Scholar
[5]
M. Wu, A. Ludwig, Modeling Equiaxed Solidification with Melt Convection and Grain Sedimentation – I: Model Description, Acta Mater. 57 (2009) 5621-5631.
DOI: 10.1016/j.actamat.2009.07.056
Google Scholar
[6]
M. Wu, A. Ludwig, Modeling Equiaxed Solidification with Melt Convection and Grain Sedimentation – II: Model Verification, Acta Mater. 57 (2009) 5632-5644.
DOI: 10.1016/j.actamat.2009.07.067
Google Scholar
[7]
M. Wu, A. Fjeld and A. Ludwig, Modelling Mixed Columnar-Equiaxed Solidification with Melt Convection and Grain Sedimentaion – Part I: Model Description, Comp. Mater. Sci. 50 (2010) 32-42.
DOI: 10.1016/j.commatsci.2010.07.005
Google Scholar
[8]
M. Wu, A. Ludwig, A. Fjeld, Modelling Mixed Columnar-Equiaxed Solidification with Melt Convection and Grain Sedimentaion – Part II: Illustrative Modelling Results and Parameter Studies, Comp. Mater. Sci. 50 (2010) 43-58.
DOI: 10.1016/j.commatsci.2010.07.006
Google Scholar
[9]
M. Stefan Kharicha, S. Eck, L. Könözsy, A. Kharicha, A. Ludwig, Experimental and numerical investigations of NH4Cl solidification, Part 1: Experimental results, Int. J. Cast Metal Res., 22 (2009) 168-171.
DOI: 10.1179/136404609x368000
Google Scholar
[10]
A. Kharicha, M. Stefan-Kharicha, A. Ludwig, M. Wu, Simultaneous observation of melt flow and motion of equiaxed crystals during solidification using a dual phase particle image velocimetry technique. Part I: stage characterization of melt flow and equiaxed crystal motion, Metall. Mater. Trans. A 44 (2013).
DOI: 10.1007/s11661-012-1414-z
Google Scholar
[11]
L. Könözsy, S. Eck, M. Stefan Kharicha, M. Wu, A. Ludwig, Experimental and numerical investigations of NH4Cl solidification, Part 2: Numerical results, Int. J. Cast Metal Res., 22 (2009) 172-174.
DOI: 10.1179/136404609x367605
Google Scholar
[12]
J. Hunt, Steady-State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng. 65 (1984) 75-83.
DOI: 10.1016/0025-5416(84)90201-5
Google Scholar
[13]
M. Martorano, C. Beckermann, Ch-A. Gandin, A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification, Metall. Mater. Trans. A 34 (2003) 1657-1674.
DOI: 10.1007/s11661-003-0311-x
Google Scholar
[14]
Ph. Thevoz, M. Rappaz, Modeling of Equiaxed Microstructure Formation in Casting, Metall. Trans. A 20(1989) 311-322.
DOI: 10.1007/bf02670257
Google Scholar
[15]
M. Rappaz, Ch. -A. Gandin, Probabilistic Modelling of Microstructure Formation in Solidification Processes, Acta Metal Mater. 41 (1993) 345-360.
DOI: 10.1016/0956-7151(93)90065-z
Google Scholar
[16]
M. Ahmadein, B. Pustal, R. Berger, E. Subasic, A. Bührig-Polaczek, Grain nucleation parameters for aluminum alloys: experimental determination and model validation, Metall. Mater. Trans. A 40 (2009) 646-653.
DOI: 10.1007/s11661-008-9738-4
Google Scholar
[17]
M. Ahmadein, M. Wu, J.H. Li, P. Schumacher, Prediction of the as-cast structure of Al-4. 0 Wt. Pct. Cu ingots, A. Ludwig, Metall. Mater. Trans. A 44 (2013) 2895–2903.
DOI: 10.1007/s11661-012-1606-6
Google Scholar
[18]
C. Beckermann, C.Y. Wang, Equiaxed dendritic solidification with convection: Part III. Comparison with NH4CI-H2O experiments, Metall. Mat. Trans. A, 27 (1996) 2784-2795.
DOI: 10.1007/bf02652371
Google Scholar
[19]
M. Wu, M. Ahmadein, A. Kharicha, A. Ludwig, JH. Li, P. Schumacher, 13th MCWASP, Schladming: Austria, IOP Conf. Ser.: Mater. Sci. Eng., 33, art. no. 012075, (2012).
DOI: 10.1088/1757-899x/33/1/012075
Google Scholar
[20]
A. Kharicha, M Stefan-Kharicha, M. Wu, A. Ludwig, Exploration of the double-diffusive convection during dendritic solidification with a combined volume-averaging and cellular-automaton model, 13th MCWASP, Schladming: Austria, IOP Conf. Ser.: Mater. Sci. Eng., 33, art. no. 012115, (2012).
DOI: 10.1088/1757-899x/33/1/012115
Google Scholar
[21]
C. Beckermann, R. Viskanta, Double-diffusive convection due to melting, Int. J. Heat Mass Transfer 31 (1988) 2077-(2089).
DOI: 10.1016/0017-9310(88)90118-4
Google Scholar