Simulation of Solidification and Convection of NH4Cl-H2O Solution in a Water-Cooled Copper Mold

Article Preview

Abstract:

The convection pattern and the evolution of mushy zone, temperature and solidification structure are measured during solidification of NH4Cl-70%H2O solution in a water-cooled copper mold with transparent sidewalls. The natural convection and crystal sedimentation are measured via Particle Image Velocimetry (PIV) technique. This experiment is simulated using a 5-phase mixed columnar-equiaxed solidification model proposed by current authors [Comp. Mater. Sci. 50 (2010) 32-4]. The 5 phases comprise the extradendritic melt, the solid dendrite and interdendritic melt inside the equiaxed grains, the solid dendrite and interdendritic melt inside the columnar grains. Melt convection and crystal sedimentation are considered. It is demonstrated that the experimentally observed flow patterns and the solidification structure can be qualitatively reproduced. Reasons for the quantitative deviation between the simulation and experiment are discussed. Analysis of the modeling results in details and improvement of the calculation accuracy will be in a subsequent step.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

247-252

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Wang, S. Yao, X. Zhang, J. Jin, M. Wu, A. Ludwig, B. Pustal, A. Bührig-Polaczek, Modeling of the thermo-solutal convection, shrinkage flow, and grain movement during globular equiaxed solidification in a multi-phase system: I. Three-phase flow model, Acta Metall. Sinica 42 (2006).

DOI: 10.1179/136404605225022874

Google Scholar

[2] T. Wang, T. Li, Z. Cao, J. Jin, T. Grimming, A. Bührig-Polaczek, M. Wu, A. Ludwig, Modeling of the thermo-solutal convection, shrinkage flow, and grain movement during globular equiaxed solidification in a multi-phase system: II. Application of model, Acta Metall. Sinica 42 (2006).

DOI: 10.1002/3527603506.ch23

Google Scholar

[3] M. Wu, A. Ludwig, A three-phase model for mixed columnar-equiaxed solidification, Metall. Mat. Trans. A 37A (2006) 1613-1631.

DOI: 10.1007/s11661-006-0104-0

Google Scholar

[4] M. Wu, A. Ludwig, Using three-phase deterministic model for the columnar-to-equiaxed transition, Metall. Mat. Trans. A 38A (2007) 1465-1475.

DOI: 10.1007/s11661-007-9175-9

Google Scholar

[5] M. Wu, A. Ludwig, Modeling Equiaxed Solidification with Melt Convection and Grain Sedimentation – I: Model Description, Acta Mater. 57 (2009) 5621-5631.

DOI: 10.1016/j.actamat.2009.07.056

Google Scholar

[6] M. Wu, A. Ludwig, Modeling Equiaxed Solidification with Melt Convection and Grain Sedimentation – II: Model Verification, Acta Mater. 57 (2009) 5632-5644.

DOI: 10.1016/j.actamat.2009.07.067

Google Scholar

[7] M. Wu, A. Fjeld and A. Ludwig, Modelling Mixed Columnar-Equiaxed Solidification with Melt Convection and Grain Sedimentaion – Part I: Model Description, Comp. Mater. Sci. 50 (2010) 32-42.

DOI: 10.1016/j.commatsci.2010.07.005

Google Scholar

[8] M. Wu, A. Ludwig, A. Fjeld, Modelling Mixed Columnar-Equiaxed Solidification with Melt Convection and Grain Sedimentaion – Part II: Illustrative Modelling Results and Parameter Studies, Comp. Mater. Sci. 50 (2010) 43-58.

DOI: 10.1016/j.commatsci.2010.07.006

Google Scholar

[9] M. Stefan Kharicha, S. Eck, L. Könözsy, A. Kharicha, A. Ludwig, Experimental and numerical investigations of NH4Cl solidification, Part 1: Experimental results, Int. J. Cast Metal Res., 22 (2009) 168-171.

DOI: 10.1179/136404609x368000

Google Scholar

[10] A. Kharicha, M. Stefan-Kharicha, A. Ludwig, M. Wu, Simultaneous observation of melt flow and motion of equiaxed crystals during solidification using a dual phase particle image velocimetry technique. Part I: stage characterization of melt flow and equiaxed crystal motion, Metall. Mater. Trans. A 44 (2013).

DOI: 10.1007/s11661-012-1414-z

Google Scholar

[11] L. Könözsy, S. Eck, M. Stefan Kharicha, M. Wu, A. Ludwig, Experimental and numerical investigations of NH4Cl solidification, Part 2: Numerical results, Int. J. Cast Metal Res., 22 (2009) 172-174.

DOI: 10.1179/136404609x367605

Google Scholar

[12] J. Hunt, Steady-State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng. 65 (1984) 75-83.

DOI: 10.1016/0025-5416(84)90201-5

Google Scholar

[13] M. Martorano, C. Beckermann, Ch-A. Gandin, A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification, Metall. Mater. Trans. A 34 (2003) 1657-1674.

DOI: 10.1007/s11661-003-0311-x

Google Scholar

[14] Ph. Thevoz, M. Rappaz, Modeling of Equiaxed Microstructure Formation in Casting, Metall. Trans. A 20(1989) 311-322.

DOI: 10.1007/bf02670257

Google Scholar

[15] M. Rappaz, Ch. -A. Gandin, Probabilistic Modelling of Microstructure Formation in Solidification Processes, Acta Metal Mater. 41 (1993) 345-360.

DOI: 10.1016/0956-7151(93)90065-z

Google Scholar

[16] M. Ahmadein, B. Pustal, R. Berger, E. Subasic, A. Bührig-Polaczek, Grain nucleation parameters for aluminum alloys: experimental determination and model validation, Metall. Mater. Trans. A 40 (2009) 646-653.

DOI: 10.1007/s11661-008-9738-4

Google Scholar

[17] M. Ahmadein, M. Wu, J.H. Li, P. Schumacher, Prediction of the as-cast structure of Al-4. 0 Wt. Pct. Cu ingots, A. Ludwig, Metall. Mater. Trans. A 44 (2013) 2895–2903.

DOI: 10.1007/s11661-012-1606-6

Google Scholar

[18] C. Beckermann, C.Y. Wang, Equiaxed dendritic solidification with convection: Part III. Comparison with NH4CI-H2O experiments, Metall. Mat. Trans. A, 27 (1996) 2784-2795.

DOI: 10.1007/bf02652371

Google Scholar

[19] M. Wu, M. Ahmadein, A. Kharicha, A. Ludwig, JH. Li, P. Schumacher, 13th MCWASP, Schladming: Austria, IOP Conf. Ser.: Mater. Sci. Eng., 33, art. no. 012075, (2012).

DOI: 10.1088/1757-899x/33/1/012075

Google Scholar

[20] A. Kharicha, M Stefan-Kharicha, M. Wu, A. Ludwig, Exploration of the double-diffusive convection during dendritic solidification with a combined volume-averaging and cellular-automaton model, 13th MCWASP, Schladming: Austria, IOP Conf. Ser.: Mater. Sci. Eng., 33, art. no. 012115, (2012).

DOI: 10.1088/1757-899x/33/1/012115

Google Scholar

[21] C. Beckermann, R. Viskanta, Double-diffusive convection due to melting, Int. J. Heat Mass Transfer 31 (1988) 2077-(2089).

DOI: 10.1016/0017-9310(88)90118-4

Google Scholar