Studying Pressure Induced Whiskers Formation from Sn-Rich Surfaces

Article Preview

Abstract:

Whiskers formed on the lead-free tin surfaces pose a serious risk to small electronic devices causing a short circuit and leading to the component/device failure. The present research was focused on the investigation of tin whisker formation on a motor control unit sockets made of tin coated copper, applying to the specimen mechanical load alone or together with heat treatment/electric current. Scanning Electron Microscopic (SEM) imaging was applied in order to study the microstructure of tin whiskers obtained, their length and number at the boundary of each imprint. If the mechanical stress increases from 1000 to 5000 MPa, the average number of whiskers and possible formation spots also increase from 570 to 1300. The length of whiskers varied from 3 μm after 0.5 h to 5.5 μm after 3 hours of exposition. It has been found that heat treatment at 150°C for 1 hour significantly reduces the number of whiskers (on average 6 times as few) formed. Therefore, the threat of failure of the electronic equipment is reduced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

271-276

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Abtew, G. Selvaduray, Lead-free Solders in Microelectronics, Materials Science and Engineering 27 (2000) 95-141.

DOI: 10.1016/s0927-796x(00)00010-3

Google Scholar

[2] B. -Z. Lee, D. N. Lee, Spontaneous Growth Mechanism of Tin Whiskers, Acta Materialia 46 (1998) 3701-3714.

DOI: 10.1016/s1359-6454(98)00045-7

Google Scholar

[3] K.G. Compton, A. Mendizza, and S.M. Arnold, Filamentary Growths on Metal Surfaces Whiskers, Corrosion 7 (1951) 327-334.

DOI: 10.5006/0010-9312-7.10.327

Google Scholar

[4] D.J. Barber, Growth of Aluminium Whiskers by Vapour Condensation, Nature. 194 (1962) 272-273.

DOI: 10.1038/194272c0

Google Scholar

[5] A. Skwarek, K. Witek, J. Ratajczak, Risk of whiskers formation on the surface of commercially available tin-rich alloys under thermal shocks, Microelectronics Reliability 49 (2009) 569-572.

DOI: 10.1016/j.microrel.2009.02.026

Google Scholar

[6] T. Fang, M. Osterman, M. Pecht, Statistical analysis of tin whisker growth, Microelectronics Reliability. 46 (2006) 846-849.

DOI: 10.1016/j.microrel.2005.06.002

Google Scholar

[7] B. Illés, B. Horváth, G. Harsányi, Effect of strongly oxidizing environment on whisker growth form tin coating, Surface & Coatings Technology 205 (2010) 2262-2266.

DOI: 10.1016/j.surfcoat.2010.09.012

Google Scholar

[8] A. Skwarek, J. Ratajczak, A. Czerwinski, K. Witek, J. Kulawik, Effect of Cu addition on whisker formation in tin-rich solder alloys under thermal shock stress, Applied Surface Science 255 (2009) 7100-7103.

DOI: 10.1016/j.apsusc.2009.03.002

Google Scholar

[9] T.H. Chuang, H.J. Lin, C.C. Chi, Rapid growth of tin whiskers on the surface of Sn–6. 6Lu alloy, Scripta Materialia 56 (2007) 45-48.

DOI: 10.1016/j.scriptamat.2006.08.061

Google Scholar

[10] T.H. Chuang, Rapid whisker growth on the surface of Sn-3Ag-0. 5Cu-1. 0Ce solder joints, Scripta Materialia. 55 (2006) 983-986.

DOI: 10.1016/j.scriptamat.2006.08.024

Google Scholar

[11] E. Chason, N. Jadhav, F. Pei, E. Buchovecky, A. Bower, Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms, Progr. Surface Science 88 (2013) 103-131.

DOI: 10.1016/j.progsurf.2013.02.002

Google Scholar

[12] N. Jiang, M. Yang, J. Novak, P. Igor, M. Osterman, Sn whiskers removed by energy photo flashing, Applied Surface Science 258 (2012) 9599-9603.

DOI: 10.1016/j.apsusc.2012.05.155

Google Scholar

[13] S.C. Britton, Spontaneous Growth of Whiskers on Tin Coatings: 20 Years of Observation, Trans. of the Institute of Metal Finishing 52 (1974) 95-102.

DOI: 10.1080/00202967.1974.11870313

Google Scholar

[14] A. Selcuker, M. Johnson, Microstructural Characterization of Electrodeposited Tin Layer in Relation to Whisker Growth, Capacitor and Resistor Technology Symposium Proc., CARTS (1990) 19-22.

Google Scholar

[15] C. -K. Lin, T. -H. Lin, Effects of continuously applied stress on tin whisker growth, Microelectronics Reliability 48 (2008) 1738-1740.

DOI: 10.1016/j.microrel.2008.04.013

Google Scholar

[16] Y. Fukuda, M. Osterman, M. Pecht, The impact of electrical current, mechanical bending, and thermal annealing on tin whisker growth, Microelectronics Reliabilit. 47 (2007) 88-92.

DOI: 10.1016/j.microrel.2006.04.011

Google Scholar

[17] S. -K. Lin,Y. Yorikado, J. Jiang, K. -S. Kim, K. Suganuma, S. -W. Chen, M. Tsujimoto, I. Yanada, Microstructure Development of Mechanical-Deformation-Induced Sn Whiskers, Journal of Electronic Materials 36 (2007) 1732-1734.

DOI: 10.1007/s11664-007-0284-4

Google Scholar

[18] T. -H. Chuang, Temperature Effects on the Whiskers in Rare-Earth Doped Sn-3Ag-0. 5Cu-0. 5Ce Solder Joints, Metallurgical and Materials Transactions A, 38A (2007) 1048-1055.

DOI: 10.1007/s11661-007-9126-5

Google Scholar