Trapping Effect on the Kinetic Critical Radius in Nucleation and Growth Processes

Article Preview

Abstract:

The critical nucleus size—above which nuclei grow, below dissolve—during diffusion controlled nucleation in binary solid-solid phase transformation process is calculated using kinetic Monte Carlo (KMC). If atomic jumps are slower in an A-rich nucleus than in the embedding B-rich matrix, the nucleus traps the A atoms approaching its surface. It doesn’t have enough time to eject A atoms before new ones arrive, even if it would be favourable thermodynamically. In this case the critical nucleus size can be even by an order of magnitude smaller than expected from equilibrium thermodynamics or without trapping. These results were published in [Z. Erdélyi et al., Acta Mater. 58 (2010) 5639]. In a recent paper M. Leitner [M. Leitner, Acta Mater. 60 (2012) 6709] has questioned our results based on the arguments that his simulations led to different results, but he could not point out the reason for the difference. In this paper we summarize our original results and on the basis of recent KMC and kinetic mean field (KMF) simulations we show that Leitner’s conclusions are not valid and we confirm again our original results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

97-102

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Schmaltzried, Chemical Kinetics of Solids, VCH Publ. New York (1995).

Google Scholar

[2] R.W. Cahn and P. Haasen (Eds. ), Physical Metallurgy (4th ed. ), publ. North Holland, Amsterdam 1996, p.688.

Google Scholar

[3] J. H. ter Host et al., Determination of the nucleus size from the growth probability of clusters, J. Chem. Phys. 119 (2003) 2241-2246.

Google Scholar

[4] J. H. ter Host, P. J. Jansen, Surf. Sci. Nucleus size and Zeldovich factor in two-dimensional nucleation at the Kossel crystal (001) surface, 574 (2005) 77-88.

DOI: 10.1016/j.susc.2004.10.020

Google Scholar

[5] K. Nishioka, Kinetic and thermodynamic definitions of the critical nucleus in nucleation theory, Phys. Rev. E 52 (1995) 3263-3265.

DOI: 10.1103/physreve.52.3263

Google Scholar

[6] Z. Erdélyi, Z. Balogh, D.L. Beke, Kinetic critical radius in nucleation and growth processes - Trapping effect, Acta Mater. 58 (2010) 5639-5645.

DOI: 10.1016/j.actamat.2010.06.037

Google Scholar

[7] M. Leitner, Absence of a trapping effect on the kinetic critical radius in nucleation and growth processes, Acta Mater. 60 (2012) 6709-6783.

DOI: 10.1016/j.actamat.2012.08.055

Google Scholar

[8] H. Mehrer (Ed. ), Diffusion in Solid Metals and Alloys - Landolt-Börnstein, New Series, vol. III/26, Berlin: Springer-Verlag, (1990).

Google Scholar

[9] J.A. Borchers et al., W.P. Pratt, J. Bass, Observation of antiparallel magnetic order in weakly coupled Co/Cu multilayers, Phys. Rev. Lett. 82 (1999) 2796-2799.

DOI: 10.1103/physrevlett.82.2796

Google Scholar

[10] P. Zahn, J. Binder, I. Mertig, R. Zeller, P.H. Dederichs, Origin of giant magnetoresistance: Bulk or interface scattering, Phys. Rev. Lett. 80 (1998) 4309-4312.

DOI: 10.1103/physrevlett.80.4309

Google Scholar

[11] M.N. Baibich et al., J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61 (1998) 2472-2475.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[12] A. Caro, M. Caro, E. M. Lopasso, D. A. Crowson, Implications of ab initio energetics on the thermodynamics of Fe-Cr alloys, Appl. Phys. Lett. 89 (2006) 121902.

DOI: 10.1063/1.2354445

Google Scholar

[13] R. L. Klueh, A. T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371 (2007) 37-52.

DOI: 10.1016/j.jnucmat.2007.05.005

Google Scholar

[14] G. Martin, Atomic mobility in Cahn's diffusion model, Phys. Rev. B 41 (1990) 2279-3383.

Google Scholar

[15] Z. Erdélyi, D.L. Beke, Importance the proper choice of transition rates in kinetic simulation of dynamic processes, Phys. Rev. B 70 (2004) 245428-1-6.

DOI: 10.1103/physrevb.70.245428

Google Scholar