Using of the Averaged Voronoi Polyhedron for the Equiaxed Solidification Modeling

Article Preview

Abstract:

For the characterization of the equiaxed polycrystalline structure the Dirichlet tessellation is often used. The results of this space decomposition Voronoi polyhedrons are convex but not necessarily bounded. Size, volume and other characteristics of these bodies are the random variables. Parameters of the Averaged Voronoi Polyhedron are used in the presented paper for the modeling of the diffusion controlled peritectic transformation. Proposed model takes into account decreasing of the transformation interface surface in the remote regions of the diffusion field due to the probabilistic grains impingements. The results of the modeling are compared with the microstructure of the Pb-32 wt.% Bi alloy and thermal analysis results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

91-96

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.W. Kerr, J. Cisse, Bolling G.F., On equilibrium and non-equilibrium peritectic transformations, On equilibrium and non-equilibrium peritectic transformations. Acta Metall. 22 (1974), 677-686.

DOI: 10.1016/0001-6160(74)90077-7

Google Scholar

[2] H. Fredriksson, T. Nylen, Mechanism of peritectic reactions and transformations, Mechanism of peritectic reactions and transformations. Met. Sci., 16 (1982), 283-294.

DOI: 10.1179/030634582790427370

Google Scholar

[3] E.P. Kalinushkin, E. Fras, W. Kapturkiewicz, A.A. Burbelko and J. Sitalo: Formation of Austenite in Peritectic Fe-C-X Alloy, Mat. Sci. Forum, 329-330 (2000), 185-190.

DOI: 10.4028/www.scientific.net/msf.329-330.185

Google Scholar

[4] K. Matrsuura, H. Maruyama, Y. Itoh, M. Kudoh, K. Ishii, Rate of Peritectic Reaction in IronCarbon System Measured by Solid/Liquid Diffusion Couple Method, ISIJ Int., 35 (1995), 183.

DOI: 10.2355/isijinternational.35.183

Google Scholar

[5] A. Das, I. Manna, S.K. Pabi, A numerical model of peritectic transformation. A numerical model of peritectic transformation, Acta Mater., 47 (1999), 1379-1388.

DOI: 10.1016/s1359-6454(98)00427-3

Google Scholar

[6] I. Ohnaka, Mathematical-analysis of solute redistribution during solidification with diffusion in solid-phase, Trans. of the ISIJ, 26 (1986), 1045-1051.

DOI: 10.2355/isijinternational1966.26.1045

Google Scholar

[7] C.Y. Wang, C. Beckermann, A unified solute diffusion model for columnar and equiaxed dendritic alloy solidification, Mat. Sci. Eng. A, 171 (1993), 199-211.

DOI: 10.1016/0921-5093(93)90407-6

Google Scholar

[8] A. A. Howe, Micro-segregation: Issues of Growth Rate and the Peritectic, Mat. Sci. Forum, 649 (2010), 419-424.

DOI: 10.4028/www.scientific.net/msf.649.419

Google Scholar

[9] C.Y. Wang and C. Beckermann, Prediction of columnar to equiaxed transition during diffusioncontrolled dendritic alloy solidification, Metall. Mater. Trans. A, 25A (1994), 1081-1093.

DOI: 10.1007/bf02652282

Google Scholar

[10] D. Tourret, Ch. -A. Gandin, A generalized segregation model for concurrent dendritic, peritectic and eutectic solidification, Acta Materialia, 57 (2009), 2066-(2079).

DOI: 10.1016/j.actamat.2009.01.002

Google Scholar

[11] H. Zhang, Ch. -A. Gandin, K. Nakajima, J. He, Mater. Sci. and Eng., 33 (2012), 012063.

Google Scholar

[12] S. Chang, D. Shangguan, D. Stefanescu, Modeling of the liquid/solid and the eutectoid phase transformation in spheroidal graphite cast iron. Metal. Trans. A, 23A (1992), 1333-1346.

DOI: 10.1007/bf02665065

Google Scholar

[13] T. Skaland, O. Grong, T. Grong, A model for the graphite formation in ductile cast iron. Metal. Trans. A, 24A (1993), 2347-2353.

DOI: 10.1007/bf02648606

Google Scholar

[14] S.M. Yoo, A. Ludwig, P.R. Sahm, Numerical simulation of nodular cast iron in permanent moulds, in: J. Beech and H. Jones (Eds. ), Solidification Processing, Renmor House, Univ. of Sheffield, 1997, pp.494-497.

Google Scholar

[15] M.I. Onsoien, O. Grong, O. Gundersen, T. Skaland, A process model for the micro-structure evolution in ductile cast iron: part I, Metall. Mat. Trans. A, 30A (1999), 1053-1068.

DOI: 10.1007/s11661-999-0158-x

Google Scholar

[16] V. Mathier, A. Jacot, M. Rappaz, Coalescence of equiaxed grains during solidification. Modelling and Simulation in Materials Science and Engineering, 12 (2004) 479÷490.

DOI: 10.1088/0965-0393/12/3/009

Google Scholar

[17] S. Vernède, M. Rappaz, Transition of the mushy zone from continuous liquid films to a coherent solid, Philos. Mag., 86 (2006), 3779-3794.

DOI: 10.1080/14786430500228705

Google Scholar

[18] S. Vernède, M. Rappaz, A simple and efficient model for mesoscale solidification simulation of globular grain structures, Acta Mater., 55 (2007), 1703-1710.

DOI: 10.1016/j.actamat.2006.10.031

Google Scholar

[19] A. Burbelko, J. Początek and M. Królikowski, Application of averaged Voronoi polyhedron in the modelling of crystallisation of eutectic nodular graphite cast iron. Arch. of Foundry Eng., 13 (2013), 134-140.

DOI: 10.2478/afe-2013-0026

Google Scholar

[20] A. Burbelko, J. Początek: in The TMS 2013 Annual Meeting Supplemental Proceedings. TMS, John Wiley & Sons, Inc., 2013, 523-530.

DOI: 10.1002/9781118663547.ch65

Google Scholar

[21] A.N. Kolmogorov, On the Statistical Theory of Metal Crystallisation, Bull. Acad. Sci. USSR, 3, (1937), 355 (in Russian).

Google Scholar

[22] H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge, University Press, (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar

[23] R. Agarwal, P. Samui, Enthalpy increment and heat capacity of Pb3Bi, J. of Alloys and Comp., 508 (2010), 333-337.

DOI: 10.1016/j.jallcom.2010.08.115

Google Scholar