A Numerical Study of the Influence of Pouring Technique on the As-Cast Structure of Al-Cu Ingots

Article Preview

Abstract:

Experimental evidence [Ohno 1987] revealed the influence of some pouring techniques on the as-cast structure. In the current work the process of pouring of the molten Al-4.0 wt.%Cu via one or multiple streams into a graphite mold is studied using a 3-phase model by considering the nucleation, the initial growth and transport of globular equiaxed crystals. The three phases are the melt, air and globular equiaxed crystals. Results showed that pouring via multiple streams increases the volume fraction and number density of crystals in the as-filled state. The subsequent solidification is calculated using a 5-phase mixed columnar-equiaxed solidification model. The five phases are the extradendritic melt, the solid dendrite and interdendritic melt inside the equiaxed grains, the solid dendrite and interdendritic melt inside the columnar grains. As final result the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition (CET), grain size, macrosegregation, and rest eutectic is predicted. Effect of melt convection and crystal sedimentation during the pouring and solidification is taken into account. The predicted as-cast structure, under the influence of single/multiple jet pouring, is evaluated bycomparison with the available experiments of Ohno.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

67-72

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Form and J. Wallace, Solidification of metals: General principles, Modern Casting 37 (1960).

Google Scholar

[2] B. Chalmers, Principles of solidification, New York: John Wiley & Sons, (1964).

Google Scholar

[3] M. Flemings, Solidification processing, New York: McGraw-Hill, (1974).

Google Scholar

[4] R. Morando, H. Biloni, G. Cole and G. Bolling, Development of macrostructure in ingots of increasing size, Metall. Trans. 1 (1970) 1407-1412.

DOI: 10.1007/bf02900262

Google Scholar

[5] A. Ohno, Solidification: The separation theory and its practical applications, Berlin: Springer, (1987).

Google Scholar

[6] R. Doherty, P. Cooper, M. Bradbury and F. Honey, On the columnar to equiaxed transition in small ingots, Metall. Mater. Trans. A 8A (1977) 397-402.

DOI: 10.1007/bf02661748

Google Scholar

[7] K. A. Jackson, J. D. Hunt, D. R. Uhlmann, T. P. Seward, On the origin of equiaxed zone in castings, Trans. Metall. Soc. AIME 236 (1966) 179-158.

Google Scholar

[8] T. Wang, S. Yao, X. Zhang, J. Jin, M. Wu, A. Ludwig, B. Pustal, A. Bührig-Polaczek, Modeling of the thermo-solutal convection, shrinkage flow, and grain movement during globular equiaxed solidification in a multi-phase system: I. Three-phase flow model, Acta Metall. Sinica 42 (2006).

DOI: 10.1179/136404605225022874

Google Scholar

[9] M. Ahmadein: Experimentation and modeling of grain nucleation and solidification of aluminum alloys in absence and presence of shear, Ph.D., Foundry Institute at RWTH-Aachen, Germany, Shakerverlag, (2009).

Google Scholar

[10] Ph. Thevoz and M. Rappaz, Modeling of equiaxed microstructure formation in casting, Metall. Trans. 20A (1989) 311-322.

DOI: 10.1007/bf02670257

Google Scholar

[11] M. Rappaz and Ch. -A. Gandin, Probabilistic modelling of microstructure formation in solidification processes, Acta Metal Mater. 41 (1993) 345-360.

DOI: 10.1016/0956-7151(93)90065-z

Google Scholar

[12] M. Ahmadein, B. Pustal, R. Berger, E. Subasic, A. Bührig-Polaczek, Grain nucleation parameters for aluminum alloys: Experimental determination and model validation, Metall. Mater. Trans. A 40A (2009) 646-653.

DOI: 10.1007/s11661-008-9738-4

Google Scholar

[13] J. Hunt, Steady-state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Eng. 65 (1984) 75-83.

DOI: 10.1016/0025-5416(84)90201-5

Google Scholar

[14] M. Martorano, C. Beckermann and Ch-A. Gandin, A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification, Metall. Mater. Trans. A, Vol. 34A, 1657-1674, (2003).

DOI: 10.1007/s11661-003-0311-x

Google Scholar

[15] M. Wu and A. Ludwig, Modeling equiaxed solidification with melt convection and grain sedimentation – I: Model description, Acta Mater. 57 (2009) 5621-5631.

DOI: 10.1016/j.actamat.2009.07.056

Google Scholar

[16] M. Wu, A. Fjeld and A. Ludwig, Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentaion – Part I: Model Description, Comp. Mater. Sci. 50 (2010) 32-42.

DOI: 10.1016/j.commatsci.2010.07.005

Google Scholar

[17] M. Ahmadein, M. Wu, J.H. Li, P. Schumacher, and A. Ludwig, Prediction of the as-cast structure of Al-4. 0 Wt. Pct. Cu ingots, Metall. Mater. Trans. A 44A (2013) 2895–2903.

DOI: 10.1007/s11661-012-1606-6

Google Scholar

[18] M. Ahmadein, M. Wu, A. Ludwig, Numerical study of the influence of mold filling conditions on the as-cast structure of Al-4 wt. % Cu ingots, ICET2012 (Int. Conference on Engineering Technology). 10-11. Oct. 2012, New Cairo City, Egypt. Conference Booklet, art. No. 6396110.

DOI: 10.1109/icengtechnol.2012.6396110

Google Scholar