Modelling of Al-7%wtSi-1wt%Fe Ternary Alloy: Application to Space Experiments with a Rotating Magnetic Field

Article Preview

Abstract:

Recently several experiments on directional solidification of Al-6.5wt.Si-0.93wt.%Fe (AlSi7Fe1) alloy were performed under terrestrial conditions and onboard the International Space Station (ISS) in the Materials Science Lab (MSL) with use of electromagnetic stirring and without it. Analysis of the samples showed that stirring with a rotating magnetic field lead to the accumulation of iron-rich intermetallics in the center of the sample and influenced the primary dendrite spacing while the secondary dendrite arm spacing were not affected. In the present paper the accumulation of the intermetallics b-Al5SiFe in the center of the samples due to RMF stirring is demonstrated numerically and the evolution of primary and secondary dendrite arm spacing is discussed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] I.J. Polmear, Light Alloys From Traditional to Nanocrystals, 4th ed., Elsevier Ltd, England, (2006).

Google Scholar

[2] S. Steinbach, L. Ratke, Melt flow in a mushy zone – barrier effect of intermetallic phases, Int. J. Cast Metals Research, 22 (1-4) (2009).

DOI: 10.1179/136404609x367920

Google Scholar

[3] L. Ratke, S. Steinbach et al, MICAST-Microstructure formation in casting of technical alloys under diffusive and magnetically controlled convective conditions, Mat. Sci. Forum 508 (2006) 131-144.

DOI: 10.4028/www.scientific.net/msf.508.131

Google Scholar

[4] T. Enz, S. Steinbach, D. Simicic et al., First Experiments Using the Materials Science Laboratory on Board the International Space Station: Experiment Preparations, Execution, and First Results, Microgravity-Science and Technology, 23 (2011).

DOI: 10.1007/s12217-010-9254-1

Google Scholar

[5] D. Ferdian, B. Suharno, B. Duployer, et al., Differential Thermal Analysis Assessment of Beta Phase Precipitation in Al-6. 5Si-1Fe Alloy, Trans. Indian Inst. Met., 66 (2012) 821-825.

DOI: 10.1007/s12666-012-0182-1

Google Scholar

[6] A. Noeppel, A. Ciobanas, X.D. Wang et al, Influence of forced/natural convection on segregation during the directional solidification of Al-based binary alloys Met. Mat. Trans B, 41B (2010) 193-208.

DOI: 10.1007/s11663-009-9311-6

Google Scholar

[7] J.N. DuPont, Mathematical Modeling of Solidification Paths in Ternary Alloys: Limiting Cases of Solute Redistribution, Met. Mat. Trans A 37A (2006) 1937-(1947).

DOI: 10.1007/s11661-006-0136-5

Google Scholar

[8] S. Ganina, V.P. Ginkin, O. Budenkova et al., Comparison of Two Models for Simulation of Binary Alloy Solidification, Defect and Diffusion Forum, 326-328 (202) 599-604.

DOI: 10.4028/www.scientific.net/ddf.326-328.599

Google Scholar

[9] O. Budenkova, F. Baltaretu, J. Kovács et al., Simulation of a directional solidification of a binary Al-7wt%Si and a ternary alloy Al-7wt%Si-1wt%Fe under the action of a rotating magnetic field, IOP Conf. Series: Mat. Sci. Eng. 33 (2012) 012046.

DOI: 10.1088/1757-899x/33/1/012046

Google Scholar

[10] A. Roosz, H.E. Exner, Numerical modelling of dendritic solidification in aluminium-rich Al-Cu-Mg alloys, Acta Metall. Mater. 38 (1990) 375.

DOI: 10.1016/0956-7151(90)90068-r

Google Scholar

[11] M. Rappaz, W.J. Boettinger, On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients, Acta Mater., 47 (1999) 3205-3219.

DOI: 10.1016/s1359-6454(99)00188-3

Google Scholar