Non-Equilibrium Processing of Ni-Si Alloys at High Undercooling and High Cooling Rates

Article Preview

Abstract:

Melt encasement (fluxing) and drop-tube techniques have been used to solidify a Ni-25 at.% Si alloy under conditions of high undercooling and high cooling rates respectively. During undercooling experiments a eutectic structure was observed, comprising alternating lamellae of single phase γ (Ni31Si12) and Ni-rich lamellae containing of a fine (200-400 nm) dispersion of β1-Ni3Si and α-Ni. This is contrary to the equilibrium phase diagram from which direct solidification to β-Ni3Si would be expected for undercoolings in excess of 53 K. Conversely, during drop-tube experiments a fine (50 nm) lamellar structure comprising alternating lamellae of the metastable phase Ni25Si9 and β1-Ni3Si is observed. This is also thought to be the result of primary eutectic solidification. Both observations would be consistent with the formation of the high temperature form of the β-phase (β23) being suppressed from the melt.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

22-27

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. W. Cahn, P. A. Siemers, J. E. Geiger and P. Bardham, The order-disorder transformation in Ni3Al and Ni3Al-fe alloys: 1. Determination of the transition-temperatures and their relation to ductility, Acta Metall. 35 (1987) 2737.

DOI: 10.1016/0001-6160(87)90273-2

Google Scholar

[2] P. H. Thornton and R. G. Davies, Temperature dependence of flow stress of gamma prime phases having L12 structure, Metall. Trans. 1 (1970) 549.

DOI: 10.1007/bf02811575

Google Scholar

[3] B. Wei and D.M. Herlach, Rapid solidification of bulk undercooled Ni-21. 4 at %Si eutectic alloy, Trans. Mat. Res. Soc. Jpn. 14A (1995) 639.

DOI: 10.1016/b978-0-444-81991-8.50156-4

Google Scholar

[4] M. Leonhardt, W. Loser and H. G. Lindenkreuz, Metastable phase formation in undercooled eutectic Ni78. 6 Si21. 4 melts, Mater. Sci. Eng. A 271 (1999) 31-37.

DOI: 10.1016/s0921-5093(99)00161-6

Google Scholar

[5] A. T. Dutra, S. Milenkovic, C. S. Kiminami, A. M. Santino, M. C. Goncalves and R. Caram, Microstructure and metastalble phase formation in a rapidly solidified Ni-Si eutectic alloy using a melt-spinning technique, J. Alloys Compounds 381 (2004).

DOI: 10.1016/j.jallcom.2004.02.059

Google Scholar

[6] Y. P Lu, F. Liu, G. C Yang, H. P. Wang and Y. H. Zhou, Grain refinement in solidification of highly undercooled eutectic Ni-Si alloy, Mater. Lett. 61 (2007) 987.

DOI: 10.1016/j.matlet.2006.06.028

Google Scholar

[7] F. Liu, Y. Z. Chen, G. C. Yang, Y. P. Lu, Z. Chen and Y. H. Zhou, Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78. 6 Si21. 4 alloy, J. Mater. Res. 22 (2007) 2953.

DOI: 10.1557/jmr.2007.0380

Google Scholar

[8] S. E. Battersby, R. F. Cochrane and A. M. Mullis, Highly undercooled germanium: Growth velocity measurements and microstructural analysis, Mater. Sci. Eng. A 226 (1997) 443.

DOI: 10.1016/s0921-5093(97)80055-x

Google Scholar

[9] M. Schwarz, A. Karma, K. Eckler and D. M. Herlach, Physical-mechanism of grain-refinement in solidification of undercooled melts, Phys. Rev. Lett. 73 (1994) 1380.

DOI: 10.1103/physrevlett.73.1380

Google Scholar

[10] A. M. Mullis and R. F. Cochrane, Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys, J. Appl. Phys. 82 (1997) 3783.

DOI: 10.1063/1.365740

Google Scholar

[11] A. M. Mullis, Rapid solidification within the framework of a hyperbolic conduction model, Int. J. Heat Mass Transf. 40 (1997) 4085.

DOI: 10.1016/s0017-9310(97)00062-8

Google Scholar

[12] Y. P. Lu, F. Liu, G. C. Yang and Y. H. Zhou, Composite growth in highly undercooled Ni70. 2 Si29. 8 eutectic alloy, App. Phys. Lett. 89 (2006) 241902.

DOI: 10.1063/1.2405875

Google Scholar

[13] Y. P. Lu, X. Lin, G. C. Yang, J. Li and Y. H. Zhou, The formation of quasiregular microstructure in highly undercooled Ni70. 2 Si29. 8 eutectic alloy, J. Appl. Phys. 104 (2008) 013535.

DOI: 10.1063/1.2955723

Google Scholar

[14] T. B. Massalski, P. R. Subramanian, H. Okamoto and L. Kacprzak. Binary Alloy Phase Diagrams, 2nd ed. ASM International, Materials Park, OH, (1990).

Google Scholar

[15] G. Kasperovich, T. Volkman, L. Ratke and D. Herlach, Microsegregation during solidification of an Al-Cu binary alloy at largely different cooling rates (0. 01 to 20, 000 K/s): Modeling and experimental study, Metall. Mater. Trans. A 39 (2008).

DOI: 10.1007/s11661-008-9505-6

Google Scholar

[16] G. A. Bertero, W. H. Hofmeister, M. B. Robinson and R. J. Bayuzick, Containerless processing and rapid solidification of Nb-Si alloys of hypereutectic composition, Metall. Trans. A 22 (1991) 2723.

DOI: 10.1007/bf02851367

Google Scholar

[17] R. Ahmad, R. F. Cochrane and A. M. Mullis, The formation of regular αNi-γ (Ni31Si12) eutectic structures from undercooled Ni-25 at. % Si melts, Intermetallics 22 (2012) 55.

DOI: 10.1016/j.intermet.2011.10.021

Google Scholar