[1]
J.D. Hunt, A numerical analysis of time dependent isolated dendritic growth for conditions near the steady state, Acta Metall. Mater. 38 (1990) 411-418.
DOI: 10.1016/0956-7151(90)90146-8
Google Scholar
[2]
Ch. -A. Gandin, From constrained to unconstrained growth during directional solidification, Acta Mater. 48 (2000) 2483-2501.
DOI: 10.1016/s1359-6454(00)00070-7
Google Scholar
[3]
D.J. Browne , J.D. Hunt, A fixed grid front-tracking model of the growth of a columnar front and an equiaxed grain during solidification of an alloy, Numerical Heat Transf., Part B: Fundamentals 45 (2004) 395-419.
DOI: 10.1080/10407790490430606
Google Scholar
[4]
L. Sturz, G. Zimmermann, Investigations on Columnar-to-Equiaxed Transition in Binary Al Alloys with and without Grain Refiners, Materials Science Forum 508 (2006) 419-424.
DOI: 10.4028/www.scientific.net/msf.508.419
Google Scholar
[5]
M.A. Martorano, C. Beckermann, Ch. -A. Gandin, A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification, Met. Mat. Trans. 34A (2003) 1657-1674.
DOI: 10.1007/s11661-003-0311-x
Google Scholar
[6]
A. Ludwig, M. Wu, Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach, Mater. Sci. Eng. A413-414 (2005) 109-114.
DOI: 10.1016/j.msea.2005.08.184
Google Scholar
[7]
A. Noeppel, O. Budenkova, G. Zimmermann, L. Sturz, N. Mangelinck-Noël, H. Jung, H. Nguyen-Thi, B. Billia, C. -A. Gandin, Y. Fautrelle, Numerical modelling of columnar to equiaxed transition – application to microgravity experiments, Int. J. Cast Metals Research 22 (2009).
DOI: 10.1179/136404609x367272
Google Scholar
[8]
Ch. -A. Gandin, M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes, Acta Metall. Mater. 42 (1994) 2233-2246.
DOI: 10.1016/0956-7151(94)90302-6
Google Scholar
[9]
P. Delaleau, C. Beckermann, R.H. Mathiesen, L. Arnberg, Mesoscopic Simulation of Dendritic Growth Observed in X-ray Video Microscopy During Directional Solidification of Al–Cu Alloys, ISIJ International 50 (2010) 1886-1894.
DOI: 10.2355/isijinternational.50.1886
Google Scholar
[10]
J. Banaszek, S. McFadden, D.J. Browne, L. Sturz, G. Zimmermann, Natural Convection and Columnar-to-Equiaxed Transition Prediction in a Front-Tracking Model of Alloy Solidification, Met. Mat. Transact. A38 (2007) 1476-1484.
DOI: 10.1007/s11661-007-9140-7
Google Scholar
[11]
H.B. Dong, P.D. Lee, Simulation of the columnar-to-equiaxed transition in directionally solidified Al–Cu alloys, Acta Mater. 53 (2005) 659-668.
DOI: 10.1016/j.actamat.2004.10.019
Google Scholar
[12]
A. Badillo, C. Beckermann, Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification, Acta Mater. 54 (2006) 2015-(2026).
DOI: 10.1016/j.actamat.2005.12.025
Google Scholar
[13]
G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, H. Nguyen Thi, Ch. -A. Gandin, D.J. Browne, W.U. Mirihanage, Investigation of columnar-to-equiaxed transition in solidification processing of AlSi alloys in microgravity – The CETSOL project, J. of Physics: Conference Series 327 (2011).
DOI: 10.1088/1742-6596/327/1/012003
Google Scholar
[14]
W.U. Mirihanage, D.J. Browne, G. Zimmermann, L. Sturz, Simulation of international space station microgravity directional solidification experiments on columnar-to-equiaxed transition, Acta Mat. 60 (2012) 6362-6371.
DOI: 10.1016/j.actamat.2012.08.015
Google Scholar
[15]
H. Nguyen Thi, B. Drevet, J.M. Debierre, D. Camel, D.B. Yao, B. Billia, Preparation of the initial solid–liquid interface and melt in directional solidification, J. Cryst. Growth 253 (2003) 539-548.
DOI: 10.1016/s0022-0248(03)01041-8
Google Scholar
[16]
H. Nguyen Thi, G. Reinhart, A. Buffet, T. Schenk, N. Mangelinck-Noël, H. Jung, N. Bergeon, B. Billia, J. Härtwig, J. Baruchel, In situ and real-time analysis of TGZM phenomena by synchrotron X-ray radiography, J. Cryst. Growth 310 (2008).
DOI: 10.1016/j.jcrysgro.2008.01.041
Google Scholar
[17]
D. R. Liu, N. Mangelinck-Noël, Ch. -A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, B. Billia, Structures in directionally solidified Al–7wt. %Si alloys: Benchmark experiments under microgravity, Acta Materialia 64 (2014) 253-265.
DOI: 10.1016/j.actamat.2013.10.038
Google Scholar
[18]
E. Schaberger, F. Grote, A. Schievenbusch, Farbätzung und Farbbildanalyse - Ein Weg zur Charakterisierung von Gefügen innovativer Gusswerkstoffe, Prakt. Metallographie 37 (2000) 419-434.
DOI: 10.1515/pm-2000-370804
Google Scholar
[19]
J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Materials Science and Engineering 65 (1984) 75-83.
DOI: 10.1016/0025-5416(84)90201-5
Google Scholar
[20]
M. Vandyoussefi, A.L. Greer, Application of cellular automaton–finite element model to the grain refinement of directionally solidified Al–4. 15 wt% Mg alloys, Acta Mater. 50 (2002) 1693-1705.
DOI: 10.1016/s1359-6454(02)00015-0
Google Scholar
[21]
W.U. Mirihanage, D.J. Browne, L. Sturz, G. Zimmermann, Numerical Modelling of the Material Science Lab - Low Gradient Furnace (MSL-LGF) Microgravity Directional Solidification Experiments on the Columnar to Equiaxed Transition, IOP Conference Series: Materials Science and Engineering 27 (2011).
DOI: 10.1088/1757-899x/27/1/012010
Google Scholar
[22]
S. Mosbah, M. Bellet, Ch. -A. Gandin, Experimental and Numerical Modeling of Segregation in Metallic Alloys, Met. Materials Transactions 41 (2010) 651-669.
DOI: 10.1007/s11661-009-0141-6
Google Scholar
[23]
Ch. A. Gandin, Modeling of solidification: Grain structures and segregations in metallic alloys, Modélisation deCompte rendus physique 11 (2010) 216-225.
DOI: 10.1016/j.crhy.2010.07.010
Google Scholar
[24]
T. Carozzani, H. Digonnet, Ch. -A. Gandin, 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification, Modeling and Simulation in Materials Science and Engineering 20 (2012) 015010.
DOI: 10.1088/0965-0393/20/1/015010
Google Scholar
[25]
T. Carozzani, Ch. -A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, Y. Fautrelle, Direct Simulation of a Solidification Benchmark Experiment, Met. Mater. Transact. A44 (2013) 873-887.
DOI: 10.1007/s11661-012-1465-1
Google Scholar