Columnar-to-Equiaxed Transition in Solidification Processing of AlSi7 Alloys in Microgravity the CETSOL Project

Article Preview

Abstract:

This paper gives an overview of the experiments on-board the International Space Station (ISS) performed so far by the CETSOL team. Al-7 wt% Si alloys with and without grain refiners were solidified in microgravity. Detailed grain structure analysis showed columnar growth in case of non-refined alloy, but the existence of a columnar to equiaxed transition (CET) in refined alloy. One main result is a sharp CET when increasing the solidification velocity and a progressive CET for lowering the temperature gradient. Applying a front tracking model this behavior was confirmed numerically for sharp CET. Using a CAFE model both segregation and grain structures were numerically modeled and show a fair agreement with the experimental findings.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

12-21

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.D. Hunt, A numerical analysis of time dependent isolated dendritic growth for conditions near the steady state, Acta Metall. Mater. 38 (1990) 411-418.

DOI: 10.1016/0956-7151(90)90146-8

Google Scholar

[2] Ch. -A. Gandin, From constrained to unconstrained growth during directional solidification, Acta Mater. 48 (2000) 2483-2501.

DOI: 10.1016/s1359-6454(00)00070-7

Google Scholar

[3] D.J. Browne , J.D. Hunt, A fixed grid front-tracking model of the growth of a columnar front and an equiaxed grain during solidification of an alloy, Numerical Heat Transf., Part B: Fundamentals 45 (2004) 395-419.

DOI: 10.1080/10407790490430606

Google Scholar

[4] L. Sturz, G. Zimmermann, Investigations on Columnar-to-Equiaxed Transition in Binary Al Alloys with and without Grain Refiners, Materials Science Forum 508 (2006) 419-424.

DOI: 10.4028/www.scientific.net/msf.508.419

Google Scholar

[5] M.A. Martorano, C. Beckermann, Ch. -A. Gandin, A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification, Met. Mat. Trans. 34A (2003) 1657-1674.

DOI: 10.1007/s11661-003-0311-x

Google Scholar

[6] A. Ludwig, M. Wu, Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach, Mater. Sci. Eng. A413-414 (2005) 109-114.

DOI: 10.1016/j.msea.2005.08.184

Google Scholar

[7] A. Noeppel, O. Budenkova, G. Zimmermann, L. Sturz, N. Mangelinck-Noël, H. Jung, H. Nguyen-Thi, B. Billia, C. -A. Gandin, Y. Fautrelle, Numerical modelling of columnar to equiaxed transition – application to microgravity experiments, Int. J. Cast Metals Research 22 (2009).

DOI: 10.1179/136404609x367272

Google Scholar

[8] Ch. -A. Gandin, M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes, Acta Metall. Mater. 42 (1994) 2233-2246.

DOI: 10.1016/0956-7151(94)90302-6

Google Scholar

[9] P. Delaleau, C. Beckermann, R.H. Mathiesen, L. Arnberg, Mesoscopic Simulation of Dendritic Growth Observed in X-ray Video Microscopy During Directional Solidification of Al–Cu Alloys, ISIJ International 50 (2010) 1886-1894.

DOI: 10.2355/isijinternational.50.1886

Google Scholar

[10] J. Banaszek, S. McFadden, D.J. Browne, L. Sturz, G. Zimmermann, Natural Convection and Columnar-to-Equiaxed Transition Prediction in a Front-Tracking Model of Alloy Solidification, Met. Mat. Transact. A38 (2007) 1476-1484.

DOI: 10.1007/s11661-007-9140-7

Google Scholar

[11] H.B. Dong, P.D. Lee, Simulation of the columnar-to-equiaxed transition in directionally solidified Al–Cu alloys, Acta Mater. 53 (2005) 659-668.

DOI: 10.1016/j.actamat.2004.10.019

Google Scholar

[12] A. Badillo, C. Beckermann, Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification, Acta Mater. 54 (2006) 2015-(2026).

DOI: 10.1016/j.actamat.2005.12.025

Google Scholar

[13] G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, H. Nguyen Thi, Ch. -A. Gandin, D.J. Browne, W.U. Mirihanage, Investigation of columnar-to-equiaxed transition in solidification processing of AlSi alloys in microgravity – The CETSOL project, J. of Physics: Conference Series 327 (2011).

DOI: 10.1088/1742-6596/327/1/012003

Google Scholar

[14] W.U. Mirihanage, D.J. Browne, G. Zimmermann, L. Sturz, Simulation of international space station microgravity directional solidification experiments on columnar-to-equiaxed transition, Acta Mat. 60 (2012) 6362-6371.

DOI: 10.1016/j.actamat.2012.08.015

Google Scholar

[15] H. Nguyen Thi, B. Drevet, J.M. Debierre, D. Camel, D.B. Yao, B. Billia, Preparation of the initial solid–liquid interface and melt in directional solidification, J. Cryst. Growth 253 (2003) 539-548.

DOI: 10.1016/s0022-0248(03)01041-8

Google Scholar

[16] H. Nguyen Thi, G. Reinhart, A. Buffet, T. Schenk, N. Mangelinck-Noël, H. Jung, N. Bergeon, B. Billia, J. Härtwig, J. Baruchel, In situ and real-time analysis of TGZM phenomena by synchrotron X-ray radiography, J. Cryst. Growth 310 (2008).

DOI: 10.1016/j.jcrysgro.2008.01.041

Google Scholar

[17] D. R. Liu, N. Mangelinck-Noël, Ch. -A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, B. Billia, Structures in directionally solidified Al–7wt. %Si alloys: Benchmark experiments under microgravity, Acta Materialia 64 (2014) 253-265.

DOI: 10.1016/j.actamat.2013.10.038

Google Scholar

[18] E. Schaberger, F. Grote, A. Schievenbusch, Farbätzung und Farbbildanalyse - Ein Weg zur Charakterisierung von Gefügen innovativer Gusswerkstoffe, Prakt. Metallographie 37 (2000) 419-434.

DOI: 10.1515/pm-2000-370804

Google Scholar

[19] J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Materials Science and Engineering 65 (1984) 75-83.

DOI: 10.1016/0025-5416(84)90201-5

Google Scholar

[20] M. Vandyoussefi, A.L. Greer, Application of cellular automaton–finite element model to the grain refinement of directionally solidified Al–4. 15 wt% Mg alloys, Acta Mater. 50 (2002) 1693-1705.

DOI: 10.1016/s1359-6454(02)00015-0

Google Scholar

[21] W.U. Mirihanage, D.J. Browne, L. Sturz, G. Zimmermann, Numerical Modelling of the Material Science Lab - Low Gradient Furnace (MSL-LGF) Microgravity Directional Solidification Experiments on the Columnar to Equiaxed Transition, IOP Conference Series: Materials Science and Engineering 27 (2011).

DOI: 10.1088/1757-899x/27/1/012010

Google Scholar

[22] S. Mosbah, M. Bellet, Ch. -A. Gandin, Experimental and Numerical Modeling of Segregation in Metallic Alloys, Met. Materials Transactions 41 (2010) 651-669.

DOI: 10.1007/s11661-009-0141-6

Google Scholar

[23] Ch. A. Gandin, Modeling of solidification: Grain structures and segregations in metallic alloys, Modélisation deCompte rendus physique 11 (2010) 216-225.

DOI: 10.1016/j.crhy.2010.07.010

Google Scholar

[24] T. Carozzani, H. Digonnet, Ch. -A. Gandin, 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification, Modeling and Simulation in Materials Science and Engineering 20 (2012) 015010.

DOI: 10.1088/0965-0393/20/1/015010

Google Scholar

[25] T. Carozzani, Ch. -A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, Y. Fautrelle, Direct Simulation of a Solidification Benchmark Experiment, Met. Mater. Transact. A44 (2013) 873-887.

DOI: 10.1007/s11661-012-1465-1

Google Scholar