[1]
J.D. Hunt, K.A. Jackson, H. Brown, Temperature Gradient Microscope Stage Suitable for Freezing Materials with Melting Points between -100 and +200 Degrees C, Rev Sci Instrum. 37 (1966) p.805–808.
DOI: 10.1063/1.1720336
Google Scholar
[2]
M.E. Glicksman, M.B. Koss, E.A. Winsa, Dendritic Growth Velocities in Microgravity, Phys Rev Lett. 73 (1994) p.573–576.
DOI: 10.1103/physrevlett.73.573
Google Scholar
[3]
R. Mathiesen, L. Arnberg, H. Nguyen-Thi, B. Billia, In Situ X-Ray Video Microscopy as a Tool in Solidification Science, JOM. 64 (2012) p.76–82.
DOI: 10.1007/s11837-011-0213-0
Google Scholar
[4]
R.H. Mathiesen, L. Arnberg, K. Ramsøskar, T. Weitkamp, C. Rau, A. Snigirev, Time-Resolved X-Ray Imaging of Aluminium Alloy Solidification Processes, Metall Mater Trans B. 33 (2002) p.613–623.
DOI: 10.1007/s11663-002-0041-2
Google Scholar
[5]
G. Reinhart, N. Mangelinck-Noël, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, et al., Investigation of Columnar-Equiaxed Transition and Equiaxed Growth of Aluminium Based Alloys by X-Ray Radiography, Mater Sci Eng A. 413-414 (2005) p.384–388.
DOI: 10.1016/j.msea.2005.08.197
Google Scholar
[6]
H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi, et al., Development of X-Ray Imaging for Observing Solidification of Carbon Steels, ISIJ Int. 51 (2011) p.402–408.
DOI: 10.2355/isijinternational.51.402
Google Scholar
[7]
Y. Houltz, J. Li, H. Nguyen-Thi, G. Reinhart, G. Salloum Abou Jaoudé, R. Mathiesen, et al., The XRMON-GF Microgravity Experiment Module on MASER 12 and its Continuation, in: Proceedings of the 21st ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA, Thun, Switzerland, (2013).
DOI: 10.1007/s12217-014-9370-4
Google Scholar
[8]
H. Nguyen-Thi, G. Reinhart, G. Salloum Abou Jaoude, R.H. Mathiesen, G. Zimmermann, Y. Houltz, et al., XRMON-GF: A Novel Facility for Solidification of Metallic Alloys with In Situ and Time-Resolved X-Ray Radiographic Characterization in Microgravity Conditions, J Cryst Growth. 374 (2013).
DOI: 10.1016/j.jcrysgro.2013.03.032
Google Scholar
[9]
A.G. Murphy, D.J. Browne, W.U. Mirihanage, R.H. Mathiesen, Combined In Situ X-Ray Radiographic Observations and Post-Solidification Metallographic Characterisation of Eutectic Transformations in Al–Cu Alloy Systems, Acta Mater. 61 (2013).
DOI: 10.1016/j.actamat.2013.04.024
Google Scholar
[10]
C. Rakete, C. Baumbach, A. Goldschmidt, D. Samberg, C.G. Schroer, F. Breede, et al., Compact X-Ray Microradiograph for In Situ Imaging of Solidification Processes: Bringing In Situ X-Ray Micro-Imaging from the Synchrotron to the Laboratory, Rev Sci Instrum. 82 (2011).
DOI: 10.1063/1.3650468
Google Scholar
[11]
S. Ganesan, D.R. Poirier, Densities of Aluminum-rich Aluminium-Copper Alloys during Solidification, Metall Mater Trans A. 18 (1987) p.721–723.
DOI: 10.1007/bf02649490
Google Scholar
[12]
G. Chai, L. Bäckerud, T. Rølland, L. Arnberg, Dendrite Coherency during Equiaxed Solidification in Binary Aluminum Alloys, Metall Mater Trans A. 26 (1995) p.965–970.
DOI: 10.1007/bf02649093
Google Scholar