Influence of AlCuSc Ternary Phase on the Microstructure and Properties of 1469 Alloy

Article Preview

Abstract:

Microstructure evolution and mechanical properties of a 1469 alloy and a Sc-free1469 type alloy were examined. SEM observation indicates that AlCuSc ternary phases (W) are formed after homogenization annealing, and cannot be dissolved during the following heat treatments. These coarse particles consume abundant Cu atoms from the Al matrix that are available for solutioning, which results in the decrease of precipitation of the T1 phase during aging treatment. The W phase has negative effects on the examined alloy’s mechanical properties. The tensile strength of Sc-added alloy is 40MPa lower than that of the Sc-free alloy. The formation of the W phase has a close relationship with Cu/Sc ratio, which shows the importance of controlling the concentration of Cu and addition of Sc. Formation of W phase suppress the effect of precipitation hardening of the T1 phase in high strength Al-Cu-Li alloys

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

1057-1062

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Davydov, T. Rostova, V. Zakharov, Y.A. Filatov, V. Yelagin, Materials Science and Engineering: A, 280 (2000) 30-36.

DOI: 10.1016/s0921-5093(99)00652-8

Google Scholar

[2] S. Iwamura, M. Nakayama, Y. Miura, , Materials Science Forum, Trans Tech Publ, 2002, pp.1151-1156.

Google Scholar

[3] J. Röyset, Metall. Sci. Technol., 25 (2007) 11-21.

Google Scholar

[4] J. Dutkiewicz, O. Simmich, R. Scholz, R. Ciach, Materials Science and Engineering: A, 234 (1997) 253-257.

DOI: 10.1016/s0921-5093(97)00229-3

Google Scholar

[5] M.Y. Teslyuk, V. Protasov, Soviet Phys. -Cryst. (Engl. Transl. ), 10 (1966).

Google Scholar

[6] M. Kharakterova, D. Eskin, L. Toropova, Acta metallurgica et materialia, 42 (1994) 2285-2290.

DOI: 10.1016/0956-7151(94)90307-7

Google Scholar

[7] L. Toropova, D. Eskin, M. Kharakterova, T. Dobatkina, Advanced aluminum alloys containing scandium: structure and properties, (Gordon & Breach Science Publishers, Newark, NJ), (1998), 175.

DOI: 10.4324/9781315097541

Google Scholar

[8] M. Gazizov, V. Teleshov, V. Zakharov, R. Kaibyshev, Journal of Alloys and Compounds, 509 (2011) 9497-9507.

DOI: 10.1016/j.jallcom.2011.07.050

Google Scholar

[9] I. Fridlyander, O. Grushko, V. Shamrai, G. Klochkov, Metal Science and Heat Treatment, 49 (2007) 279-283.

DOI: 10.1007/s11041-007-0049-y

Google Scholar

[10] Røyset, N. Ryum, International Materials Reviews, 50 (2005) 19-44.

Google Scholar

[11] Y. Miura, K. Horikawa, K. Yamada, M. Nakayama, Proc. the 4th Int. Conf. on Aluminum Alloys, 1994, pp.161-168.

Google Scholar

[12] A. Norman, P. Prangnell, R. McEwen, Acta Materialia, 46 (1998) 5715-5732.

DOI: 10.1016/s1359-6454(98)00257-2

Google Scholar

[13] K. Hyde, A. Norman, P. Prangnell, Acta Materialia, 49 (2001) 1327-1337.

Google Scholar