Strain Induced Rapid Precipitation in Al-Er-Zr Alloy

Article Preview

Abstract:

The high temperature strength of aluminum can be improved by forming thermal stable precipitates of microalloying elements such as Er, Sc and Zr. Our previous research indicates that composite addition of Er and Zr can improve the amount of precipitations, but the aging time to approach the peak hardness is relatively long. In this paper, we will focus on the deformation behavior of the Al-Er-Zr alloy during hot deformation process and the corresponding microstructure evolution. The results show that the strain can induce rapid precipitation in Al-Er-Zr alloy during hot working conditions. The mechanism of the rapid precipitation and its effect on thermomechanical processing are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

1044-1049

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.E. Knipling, D.C. Dunand, D.N. Seidman, Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450-600℃, Acta Mater. 56 (2008) 1182-1195.

DOI: 10.1016/j.actamat.2007.11.011

Google Scholar

[2] J.D. Robson, P.B. Prangnell, Dispersoid precipitation and process modeling in Zirconium containing commercial aluminium alloys, Acta Mater. 49(2001)599-613.

DOI: 10.1016/s1359-6454(00)00351-7

Google Scholar

[3] S. Hori, S. Saji, T. Kobayashi, Prolonged aging of Al-0. 22Zr alloys, J. Jpn. Inst. Light Met. 37(1973) 1134-1138.

Google Scholar

[4] H. Hallem, B. Forbord, K. Marthinsen, An investigation of dilute Al–Hf and Al–Hf–Si alloys, Mater. Sci. Eng. A, 387-389(2004)940-943.

DOI: 10.1016/j.msea.2003.10.375

Google Scholar

[5] T. Sato, A. Kamio, G.W. Lorimer, Effects of Si and Ti Additions on the Nucleation and Phase Stability of the L12-Type Al3Zr Phase in Al-Zr Alloys, Mater. Sci. Forum, 217-222(1996)895-900.

DOI: 10.4028/www.scientific.net/msf.217-222.895

Google Scholar

[6] K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, D.N. Seidman, Precipitation evolution in Al–0. 1Sc, Al–0. 1Zr and Al–0. 1Sc–0. 1Zr (at. %) alloys during isochronal aging, Acta Mater. 58(2010) 5184-5195.

DOI: 10.1016/j.actamat.2010.05.054

Google Scholar

[7] S.P. Wen, K.Y. Gao, Y. Li, H. Huang, Z.R. Nie, Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy, Scipta Mater. 65(2011)592-595.

DOI: 10.1016/j.scriptamat.2011.06.033

Google Scholar

[8] Y.Z. Zhang, W. Zhou, H.Y. Gao, Y.H. Han, K. Wang, J. Wang, B.D. Sun, S.W. Gu, W.R. You, Precipitation evolution of Al–Zr–Yb alloys during isochronal aging, Scipta Mater. 69(2013)477-480.

DOI: 10.1016/j.scriptamat.2013.06.003

Google Scholar

[9] A. Panditm A. Murugaiyan, A.S. Podder, A. Haldar, D. Bhattacharjee, S. Chandra, R.K. Ray, Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels, Scipta Mater. 53(2005)1309-1314.

DOI: 10.1016/j.scriptamat.2005.07.003

Google Scholar

[10] B. Dutta, E.J. Palmiere, C.M. Sellars, Modelling the kinetics of strain induced precipitation in Nb microalloyed steels, Acta Mater. 49 (2001) 785-794.

DOI: 10.1016/s1359-6454(00)00389-x

Google Scholar

[11] H. Monajati, F. Zarandi, M. Jahazi, S. Yue, Strain induced γ' precipitation in nickel base superalloy Udimet 720 using a stress relaxation based technique, Scripta Mater. 52 (2005) 771-776.

DOI: 10.1016/j.scriptamat.2004.12.006

Google Scholar

[12] K. Teichmann, C.D. Marioara, S.J. Andersen, K. Marthisen, The effect of preaging deformation on the precipitation behavior of an Al-Mg-Si alloy, Metall. Mater. Trans. A, 43(2012)4006-4014.

DOI: 10.1007/s11661-012-1235-0

Google Scholar

[13] C. Genevois, D. Fabregue, A. Deschamps, W.J. Poole, On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy, Mater. Sci. Eng. A, 441(2006) 39-48.

DOI: 10.1016/j.msea.2006.07.151

Google Scholar

[14] Y.C. Lin, L.T. Li, Y.Q. Jiang, A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al–Zn–Mg–Cu alloy under hot working condition. Exp. Mech. 2011: 9546-9556.

DOI: 10.1007/s11340-011-9546-4

Google Scholar

[15] F.J. Humphreys,M. Hatherly,Recrystallization and related annealing phenomena, 2nd ed., Pergamon, Oxford, (2004).

Google Scholar

[16] H. Huang, S.P. Wen, K.Y. Gao, Z.R. Nie, Age Hardening Behavior and Corresponding Microstructure of Dilute Al-Er-Zr Alloys, Metall. Mater. Trans. A 44(2013)2849-2856.

DOI: 10.1007/s11661-012-1600-z

Google Scholar

[17] S.P. Wen, K.Y. Gao, Y. Li, H. Huang, W. Wang, Z.R. Nie, Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature, J. Alloy Comp. 574(2013)92-97.

DOI: 10.1016/j.jallcom.2013.03.237

Google Scholar

[18] B. Dutta, E. Valdes, C. M. Sellars, Mechanism and kinetics of strain induced precipitation of Nb(C, N) in austenite, Acta Metall. Mater. 40(1992)653-662.

DOI: 10.1016/0956-7151(92)90006-z

Google Scholar

[19] B. Dutta, C.M. Sellars, Strengthening of austenite by Niobium during hot rolling of microalloyed steel, Mat. Sci. Technol. 2(1986)197-206.

DOI: 10.1179/mst.1986.2.2.146

Google Scholar

[20] J. Royset, Scandium in aluminium alloys overview: Physical metallurgy, properties and applications, Metall. Sci. Tech. 25(2)(2007), 11-21.

Google Scholar