Recrystallization Behavior of High-Strength AA 7075 Alloy Processed by New Short-Cycled Thermo-Mechanical Processing

Article Preview

Abstract:

Recrystallization behavior under different conditions (different temperatures and times) of AA 7075 alloy processed by new short-cycled thermo-mechanical processing was investigated to design a suitable recrystallization schedule. With acquiring recrystallization activation energy by DSC, the recrystallization behavior was successfully verified by theoretical calculation. Experimental results of recrystallization response and re-dissolution of precipitates during isothermal annealing reveal excellent agreement with DSC prediction. The results show that the obtained activation energy of recrystallization can be used to establish the relationship between recrystallization temperatures and times. It is proposed that an appropriate recrystallization treatment (703-753 K/1-5 min) could be used to acquire completely recrystallized grains with size <10 μm, contributing to better formability/ductility. The coarsening rate of these fine recrystallized grains is fairly low even though extending the solution treatment times at 753 K. Therefore, it indicates that the recrystallization dynamical equation would be a useful method to adjust recrystallization temperatures and times to satisfy various requirements of structures and properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

1269-1274

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Antonione, F. Marino, G. Riontino, S. Abis and E. Di Russo, An evaluation of AA 7012 microstructure by differential scanning calorimetry, Mater. Chem. Phys. 20 (1988) 13-25.

DOI: 10.1016/0254-0584(88)90055-7

Google Scholar

[2] J.M. Papazian, Calorimetric studies of precipitation and dissolution kinetics in aluminum alloys 2219 and 7075, Metall. Trans. A. 13 (1982) 761-769.

DOI: 10.1007/bf02642389

Google Scholar

[3] C.E.R. Torres, F.H. Sánchez, A. González, F. Actis and R. Herreara, Study of the kinetics of the recrystallization of cold-rolled low-carbon steel, Metall. Mater. Trans. A. 33 (2002) 25-31.

DOI: 10.1007/s11661-002-0003-y

Google Scholar

[4] N. Hansen, T. B. Yu, A model for recovery kinetics of aluminum after large strain, Mater. Sci. Forum. 715-716 (2012) 374-379.

DOI: 10.4028/www.scientific.net/msf.715-716.374

Google Scholar

[5] Y. Birol, Recrystallization of a supersaturated Al-Mn alloy, Scripta Mater. 59 (2008) 611-614.

DOI: 10.1016/j.scriptamat.2008.05.016

Google Scholar

[6] W.H. Hildebrandt, Differential scanning calorimetry evaluations of recrystallization behavior in aluminum sheet, Metall. Trans. A. 10 (1979) 1045-1048.

DOI: 10.1007/bf02811650

Google Scholar

[7] M. Tajally and E. Emadoddin, Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets, Mater. Des. 32 (2011) 1594-1599.

DOI: 10.1016/j.matdes.2010.09.001

Google Scholar

[8] O.G. Lademo, K.O. Pedersen, T. Furu and O.S. Hopperstad, An experimental and numerical study on the formability of textured AlZnMg alloys, Euro. J. Mech. - A/Solids. 27 (2008) 116-140.

DOI: 10.1016/j.euromechsol.2007.06.003

Google Scholar

[9] J. Buha, R.N. Lumley and A.G. Crosky, Secondary ageing in an aluminium alloy 7050, Mater. Sci. Eng. A. 492 (2008) 1-10.

DOI: 10.1016/j.msea.2008.02.039

Google Scholar

[10] A.A. Duswalt, The practice of obtaining kinetic data by differential scanning calorimetry, Thermochim. Acta. 8 (1974) 57-68.

DOI: 10.1016/0040-6031(74)85072-0

Google Scholar

[11] A. Gholinia, F.J. Humphreys and P.B. Prangnell, Production of ultra-fine grain microstructures in Al-Mg alloys by coventional rolling, Acta Mater. 50 (2002) 4461-4476.

DOI: 10.1016/s1359-6454(02)00253-7

Google Scholar

[12] W.C. Liu and B. Radhakrishnan, Recrystallization behavior of a supersaturated Al–Mn alloy, Mater. Lett. 64 (2010) 1829-1832.

DOI: 10.1016/j.matlet.2010.05.046

Google Scholar

[13] W.C. Liu and J.G. Morris, Effect of initial texture on the recrystallization texture of cold rolled AA 5182 aluminum alloy, Mater. Sci. Eng. A. 402 (2005) 215-227.

DOI: 10.1016/j.msea.2005.04.040

Google Scholar

[14] J. Waldman, H. Sulinski and H. Markus, The effect of ingot processing treatments on the grain size and properties of Al alloy 7075, Metall. Trans. 5 (1974) 573-584.

DOI: 10.1007/bf02644652

Google Scholar

[15] C.C. Bampton, J.A. Wert and M.W. Mahoney, Heating rate effects on recrystallized grain size in two Al-Zn-Mg-Cu alloys, Metall. Trans. A. 13 (1982) 193-198.

DOI: 10.1007/bf02643308

Google Scholar

[16] R. Shabadi, S. Suwas, S. Kumar, H.J. Roven and E.S. Dwarkadasa, Texture and formability studies on AA7020 Al alloy sheets, Mater. Sci. Eng. A. 558 (2012) 439-445.

DOI: 10.1016/j.msea.2012.08.024

Google Scholar

[17] G. Terlinde and G. Luetjering, Influence of grain size and age-hardening on dislocation pile-ups and tensile fracture for a Ti-Al alloy, Metall. Trans. A. 13 (1982) 1283-1292.

DOI: 10.1007/bf02645512

Google Scholar

[18] R. Stevenson, Correlation of tensile properties with plane-strain, limiting dome height, J. App. Metal. 3 (1984) 272-280.

DOI: 10.1007/bf02833655

Google Scholar

[19] J. M. Story, W. H. Hunt, Jr. and D. J. Lege, Formability of Al-Mn alloy 3003-O with different microstructures, Alum. 57 (1981) 744-748.

Google Scholar