The Grain Refinement of Al-Si Alloys and the Cause of Si Poisoning: Insights Revealed by the Interdependence Model

Article Preview

Abstract:

Recent work has extended the Interdependence Model to the prediction of grain size of aluminium alloys when refined by Al-Ti-B master alloys. The relative contribution of Ti solute and TiB2 particles to the as-cast grain size was determined indicating the optimum level of addition required to provide cost effective use of master alloy. This paper quantifies the effect of Al5Ti1B master alloy additions on the grain size of Al-Si alloys. The Al-Si system is a special case where additions of Si above a few percent poison grain refinement resulting in larger grain sizes. Consideration of the complicating effect of Si poisoning on the prediction of the grain size of these alloys and possible approaches to dealing with these complications are presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

161-166

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Easton MA, StJohn DH, Prasad A. Grain refinement of aluminium alloys: recent developments in predicting the as-cast grain size of alloys refined by Al-Ti-B master alloys. Light Metals 2014. San Diego, CA: The Metals, Minerals and Materials Society, 2014. p. accepted for publication.

DOI: 10.1002/9781118888438.ch156

Google Scholar

[2] Qian M, Cao P, Easton MA, McDonald SD, StJohn DH. An analytical model for constitutional supercooling-driven grain formation and grain size prediction. Acta Mater. 2010; 58: 3262.

DOI: 10.1016/j.actamat.2010.01.052

Google Scholar

[3] StJohn DH, Qian M, Easton MA, Cao P. The Interdependence Theory: the relationship between grain formation and nucleant selection. Acta Mater. 2011; 59: 4907.

DOI: 10.1016/j.actamat.2011.04.035

Google Scholar

[4] StJohn DH, Easton MA, Qian M, Taylor JA. Grain Refinement of Magnesium Alloys: A Review of Recent Research, Theoretical Developments, and Their Application. Metall. Mater. Trans. A 2013; 44: 2935.

DOI: 10.1007/s11661-012-1513-x

Google Scholar

[5] Easton MA, StJohn DH. An analysis of the relationship between grain size, solute content and the potency and content of nucleant particles. Metall. Mater. Trans. A 2005; 36A: (1911).

DOI: 10.1007/s11661-005-0054-y

Google Scholar

[6] Johnsson M, Bäckerud L. The Influence of Composition on Equiaxed Crystal Growth Mechanisms and Grain Size in Al Alloys. Z. Metallkde. 1996; 87: 216.

DOI: 10.1515/ijmr-1996-870312

Google Scholar

[7] Johnsson M. Influence of Si and Fe on the grain refinement of Al. Z. Metallkde. 1994; 85: 781.

Google Scholar

[8] McKay BJ, Schumacher P. An investigative Study of Si Poisoning in Al-Si Alloys using the Metallic Glass Technique. In: Chu MG, Granger DA, Han Q, editors. Solidification of Aluminum Alloys. Charlotte, NC: The Minerals, Metals and Materials Society, 2004. p.157.

Google Scholar

[9] Quested TE, Dinsdale AT, Greer AL. Thermodynamic evidence for a poisoning mechanism iin the Al-Si-Ti system. Mater. Sci. Technol. 2006; 22: 1126.

DOI: 10.1179/174328406x114234

Google Scholar

[10] Qiu D, Taylor JA, Zhang M-X, Kelly PM. A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys. Acta Mater. 2007; 55: 1447.

DOI: 10.1016/j.actamat.2006.09.046

Google Scholar

[11] Birol Y. Effect of solute Si and Cu on grain size of aluminium alloys. Inter. J. Cast Metals Res. 2013; 26: 22.

DOI: 10.1179/1743133612y.0000000023

Google Scholar

[12] Lee YC, Dahle AK, StJohn DH, Hutt JEC. The Effect of Grain Refinement and Silicon Content on Grain Formation in Hypoeutectic Al-Si Alloys. Mater. Sci. Engng. A 1999; 259: 43.

DOI: 10.1016/s0921-5093(98)00884-3

Google Scholar

[13] Easton MA, StJohn DH. The Partitioning of Titanium during the Solidification of Aluminium Alloys. Mater. Sci. Technol. 2000; 16: 993.

DOI: 10.1179/026708300101508946

Google Scholar

[14] Bäckerud L, Król E, Tamminen J. Solidification Characteristics of Aluminium Alloys Vol. 1: Skanaluminium, Universitetsforlaget AS, Oslo, Norway, (1986).

Google Scholar

[15] Jigajinni SM, Venkateswarlu K, Kori SA. Computer aided cooling curve analysis for Al-5Si and Al-11Si alloys. Inter. Jnl. Eng. Sci. Technol. 2011; 3: 257.

DOI: 10.4314/ijest.v3i6.21

Google Scholar

[16] Hutt J. The origin of equiaxed crystals and the grain size transition in aluminium-silicon alloys. Department of Mining, Minerals and Materials Engineering. Brisbane, Australia: The University of Queensland, (2001).

Google Scholar

[17] Hutt JEC, StJohn DH, Hogan L, Dahle AK. Equiaxed Solidification of Al-Si Alloys. Mater. Sci. Technol. 1999; 15: 495.

DOI: 10.1179/026708399101506184

Google Scholar

[18] Chai G, Bäckerud L, Arnberg L. Relation Between Grain Size and Coherency Parameters in Aluminium Alloys. Mater. Sci. Technol. 1995; 11: 1099.

DOI: 10.1179/mst.1995.11.11.1099

Google Scholar

[19] Prasad A, Yuan L, Lee PD, StJohn DH. Modelling of the Nucleation-Free Zone Formed during the Initial Transient of Grain Formation. TMS2013 Annual Meeting Supplemental Proceedings: TMS (The Minerals, Metals & Materials Society), 2013. p.501.

DOI: 10.1002/9781118663547.ch62

Google Scholar

[20] Prasad A, Yuan L, Lee PD, StJohn DH. The Interdependence model of grain nucleation: A numerical analysis of the Nucleation-Free Zone. Acta Mater. 2013; 61: 5914.

DOI: 10.1016/j.actamat.2013.06.015

Google Scholar