Combined Surface Treatment of Electron Beam Alloying and PVD Hard Coating for Al Alloys

Article Preview

Abstract:

Due to their typically high hardness, excellent resistance against wear, and their low coefficient of friction, Physical Vapor Deposition (PVD) hard coatings are used on steels for a wide range of tools and components. Currently, however, the potential for wear protection of Al alloy components cannot be exploited. The thin PVD layers tend to collapse and disintegrate due to plastic deformation of the soft base material. Present research is focused on electron beam (EB) surface alloying, using Co-based additives to increase the surface hardness of the Al base material, producing an improved supporting effect for PVD coatings. The influence of different beam deflection techniques and EB parameters on the microstructure and hardness of alloyed layers was investigated. The properties of the duplex composite layers produced are strongly dependent on the thermal stability of the EB alloyed layers (type and amount of intermetallic compounds, coarsening effects) which are affected by the temperature-time cycle of the PVD process. This will be discussed by means of SEM and EDX investigations in correlation with XRD analysis. Measurements using scratch test with increasing load result in critical load values for the combined treatment that are 3 to 5 times higher when compared to only PVD-coated base material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

187-192

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Lugscheider, G. Krämer, C. Barimani, H. Zimmermann, PVD coatings on aluminium substrates, Surf Coat Technol 74-75 (1995) 497-502.

DOI: 10.1016/0257-8972(95)08305-7

Google Scholar

[2] K. Itoh, J. Umniuto, H. Ishimaru, Improvement of an aluminium alloy valve for ultra high vacuum system, in: R.M. Yazici (ed. ), Protective Coatings: Processing and Characterization, TMS, 1990, 21-29.

Google Scholar

[3] B.R. Anton, P.C. Esquibel, Decorative and functional TiN coatings for aluminium bicycle parts, 45th Annual Technical Conference Proceedings, 2002, 407.

Google Scholar

[4] I. Senf, G. Berg, C. Friedrich, E. Broszeit, F. Stippich, G.K. Woll, Beanspruchungsverhalten von PVD-CrN-Beschichtungen auf Leichtmetallwerkstoffen, Mat. -wiss. u. Werkstofftech. 29 (1998) 9-15.

DOI: 10.1002/mawe.19980290105

Google Scholar

[5] O. Fuchs, C. Friedrich, G. Berg, E. Broszeit, A. Leyland, A. Mathews, Hard coatings on light metal components under mechanical surface loading, Mat. -wiss. u. Werkstofftech. 29 (1998) 141-152.

DOI: 10.1002/mawe.19980290308

Google Scholar

[6] F. Ashrafizadeh, Adhesion evaluation of PVD coatings to aluminium substrate, Surf Coat. Technol 130 (2000) 186-194.

DOI: 10.1016/s0257-8972(00)00670-8

Google Scholar

[7] X. Lifang, Y. Zhaohui, L. Jiaxuan, Effects of intermediate layers on the tribological behavior of DLC coated 2024 aluminum alloy, Wear 257 (2004) 599-605.

DOI: 10.1016/j.wear.2004.03.009

Google Scholar

[8] G. Bolelli, B. Bonferroni, G. Coletta, L. Lusvarghi, F. Pitacco, Wear and corrosion behaviour of HVOF WC–CoCr/CVD DLC hybrid coating systems deposited onto aluminium substrate, Surf Coat Technol 205 (2011) 4211-4220.

DOI: 10.1016/j.surfcoat.2011.03.021

Google Scholar

[9] A. Buchwalder, Beitrag zur Flüssigphasen-Randschichtbehandlung von Bauteilen aus Aluminiumwerkstoffen mittels Elektronenstrahl, Thesis TU Bergakademie Freiberg, (2007).

Google Scholar

[10] R. Zenker, A. Buchwalder, M. Klemm, Neue Entwicklungen auf dem Gebiet der thermischen Elektronenstrahl-Randschichtbehandlung von Al-Legierungen, HTM 64 (2009) 4, 208-214.

DOI: 10.3139/105.110028

Google Scholar

[11] R. Franke, I. Haase, M. Klemm, R. Zenker, Friction and wear behaviour of electron beam surface treated aluminium alloys AlSi10Mg(Cu) and AlSi35 (DISPAL S 220), Wear 269 (2010) 11-12, 921-929.

DOI: 10.1016/j.wear.2010.08.002

Google Scholar

[13] R.J. Drese, In-Situ-Messungen der mechanischen Spannungen in gesputterten Metall- und Oxidschichten, Thesis RWTH Aachen, (2005).

Google Scholar

[12] M. Milić, M. Molosavijević, N. Bibić, N. Popović, The influence of the physicochemical characteristics of the substrate surface on the deposited TiN film properties, Thin Solid Films 163 (1988) 309–316.

DOI: 10.1016/0040-6090(88)90441-5

Google Scholar

[13] G.E.R. Schulze, Dichte und Raumerfüllung bei intermetallischen Verbindungen, insbesondere Laves-Phasen, Zeitschrift für Kristallographie 115 (1961) 3-4, 261–268.

DOI: 10.1524/zkri.1961.115.3-4.261

Google Scholar