[1]
JAIN S, LIM M L C, HUDSON J L, et al. Spreading of intergranular corrosion on the surface of sensitized Al-4. 4Mg alloys: A general finding, J. Corrosion Science, 2012, 59: 136–147.
DOI: 10.1016/j.corsci.2012.02.018
Google Scholar
[2]
ARGADE G. R, N. KUMAR, R.S. MISHRA. Stress corrosion cracking susceptibility of ultrafine grained Al–Mg–Sc alloy, J. Materials Science & Engineering A, 2013, 565: 80–89.
DOI: 10.1016/j.msea.2012.11.066
Google Scholar
[3]
ZHU Y, KAR S, FREE M L, et al. Long-term corrosion damage prediction modeling of AA5083 alloys based on experiment, theory, and molecular dynamics simulations, J. Salt Lake City, UT: University of Utah, 20953, (2011).
Google Scholar
[4]
GOSWAMI R, SPANOS G, PAO P S, et al. Precipitation behavior of the β phase in Al-5083, J. Materials Science and Engineering A, 2010, 527: 1089–1095.
DOI: 10.1016/j.msea.2009.10.007
Google Scholar
[5]
GOSWAMI R, HOLTZ R L. Transmission Electron Microscopic Investigations of Grain Boundary Beta Phase Precipitation in Al 5083 Aged at 373 K (100 ℃), J. Metallurgical and Materials Transactions A, 2012, 30: 1210-1220.
DOI: 10.1007/s11661-012-1166-9
Google Scholar
[6]
KRAMER L, PHILLIPPI M, TACK W T, WONG C. Locally Reversing Sensitization in 5xxx Aluminum Plate, J. Journal of Materials Engineering and Performance, 2012; 21(6): 1025–1029.
DOI: 10.1007/s11665-011-9998-9
Google Scholar
[7]
GOSWAMI R, SPANOS G, PAO P S, et al. Precipitation behavior of the β phase in Al-5083, J. Materials Science and Engineering A, 2010, 527: 1089–1095.
DOI: 10.1016/j.msea.2009.10.007
Google Scholar
[8]
CHOI D H, AHN B W, QUESNEL D J, et al. Behavior of β phase (Al3Mg2) in AA 5083 during friction stir welding, J. Intermetallics, 2013, 35: 120-127.
DOI: 10.1016/j.intermet.2012.12.004
Google Scholar
[9]
VARGEL C, JACQUES M, SCHMIDT M P. Corrosion of Aluminum. Paris, French. (2004).
Google Scholar
[10]
SEARLES J L, GOUMA P I, BUCHHEIT R G. Stress corrosion cracking of sensitized AA5083 (Al-4. 5Mg-1. 0Mn), J. Metallurgical and Materials Transactions A, 2001, 32A (11): 2859-2867.
DOI: 10.1007/s11661-001-1036-3
Google Scholar
[11]
MARQUIS E A, Seidman D N, ASTA M, et al. Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations J. Acta Materialia, 2006, 54: 119–130.
DOI: 10.1016/j.actamat.2005.08.035
Google Scholar
[12]
KENDIG K L, MIRACLE D B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy J. Acta Materialia, 2002, 50: 4165–4175.
DOI: 10.1016/s1359-6454(02)00258-6
Google Scholar
[13]
WEN S P, GAO K Y, LI Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy J. Scripta Materialia, 2011, 65: 592–595.
DOI: 10.1016/j.scriptamat.2011.06.033
Google Scholar
[14]
WEN S P, XING Z B, HUANG H, et al. The effect of erbium on the microstructure and mechanical properties,J. Materials Science and Engineering A, 2009, 516: 42-49.
Google Scholar
[15]
10. 1520/G0067-2013. Standard test method for determining the susceptibility to intergranular corrosion of 5XXX series aluminum alloys by mass loss after exposure to nitric acid (NAMLT Test), S.
DOI: 10.1520/g0067
Google Scholar
[16]
10. 1520/B0928_B0928M-2009. Standard specification for high magnesium aluminum-alloy sheet and plate for marine service and similar environments, S.
Google Scholar