[1]
R.P. Garrett, J. Lin, T.A. Dean, Solution heat treatment and cold die quenching in forming AA6xxx sheet components: feasibility study, in: SheetMetal2005. Proceedings of the 11th International Conference, (2005).
Google Scholar
[2]
Mohamed S. Mohamed, Alistair D. Foster, Jianguo Lin, Daniel S. Balint, Trevor A. Dean, Investigation of deformation and failure features in hot stamping of AA6082: Experimentation and modeling, Int. J. Mach. Tool Manu. 53 (2012) 27-38.
DOI: 10.1016/j.ijmachtools.2011.07.005
Google Scholar
[3]
Paolo F. Bariani, Stefania Bruschi, Andrea Ghiotti, Francesco Michieletto, Hot stamping of AA5083 aluminium alloy sheets, CIRP Ann. Manuf. Technol. 62 (2013) 251–254.
DOI: 10.1016/j.cirp.2013.03.050
Google Scholar
[4]
L. Wang, M. Strangwood, D. Balint, J. Lin, T.A. Dean, Formability and failure mechanisms of AA2024 under hot forming conditions, Mater. Sci. Engg. A. 528 (2011) 2648–2656.
DOI: 10.1016/j.msea.2010.11.084
Google Scholar
[5]
Xiaobo Fan, Zhubin He, Shijian Yuan, Peng Lin, Investigation on strengthening of 6A02 aluminum alloy sheet in hot forming-quenching integrated process with warm forming-dies, Mater. Sci. Engg. A. 587(2013) 221–227.
DOI: 10.1016/j.msea.2013.08.059
Google Scholar
[6]
Dörr, J., 2011. Semi-hot and hot forming of conventional and high-strength aluminium alloys. In: Forming in Car Body Engineering, ACI, Bad Nauheim.
Google Scholar
[7]
Schepers, B., Kelsch, R., 2010. Material & Process Innovations for Aluminium hang-on part series applications. In: Doors and closures in car body engineering, ACI, Bad Nauheim.
Google Scholar
[8]
Degischer, H.P., Lacom, W., Zahra, A., Zahra, C.Y., 1980. Decomposition processes in an Al-5%Zn-1%Mg alloy. Z. Metallkd. 71, 231-238.
DOI: 10.1515/ijmr-1980-710405
Google Scholar
[9]
Löffler H., Kovacs I., Lendvai J., 1983. Review: Decomposition processes in Al-Zn-Mg alloys. J. Mater. Sci. 18, 2215-2240.
DOI: 10.1007/bf00541825
Google Scholar
[10]
M. Nicolas, A. Deschamps, Characterization and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments, Acta Mater. 51 (2003) 6077–6094.
DOI: 10.1016/s1359-6454(03)00429-4
Google Scholar
[11]
S.P. Ringer, K. Hono, Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies, Mater. Charact. 44 (2000) 101–131.
DOI: 10.1016/s1044-5803(99)00051-0
Google Scholar
[12]
A. Deschamps, Y. Bréchet, Influence of quench and heating rates on the ageing response of an Al–Zn–Mg–(Zr) alloy, Mater. Sci. Engg. A. 251 (1998) 200-207.
DOI: 10.1016/s0921-5093(98)00615-7
Google Scholar
[13]
M. Kumar, C. Poletti, H.P. Degischer, Precipitation kinetics in warm forming of AW-7020 alloy, Mater. Sci. Engg. A, 561 (2013) 362–370.
DOI: 10.1016/j.msea.2012.10.031
Google Scholar
[14]
M. Lee, S. Sohn, C. Kang, D. Suh, S. Lee, Effects of pre-treatment conditions on warm hydroformability of 7075 aluminum tubes, J. Mater. Process. Technol., 155-156 (2004) 1337–1343.
DOI: 10.1016/j.jmatprotec.2004.04.200
Google Scholar
[15]
D. Li, A. K. Ghosh, Tensile deformation behaviour of aluminium alloys at warm forming temperatures, J. Mater. Process. Technol., 145 (2004) 281–293.
Google Scholar
[16]
M. J. Starink, Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics, Int. Mater. Rev, 49 (2004) 191-226.
DOI: 10.1179/095066004225010532
Google Scholar