Superplasticity of Ultra-Fine Grained 7075 Alloy Processed by High-Pressure Torsion

Article Preview

Abstract:

An Al 7075 alloy (5.63mass%Zn-2.56mass%Mg-1.68mass%Cu-0.21mass%Fe-0.19mass%Cr-0.14mass%Si-0.02mass%Ti with balance of Al) was processed by high-pressure torsion (HPT) under an applied pressure of 6 GPa for 1, 3 and 5 revolutions with a rotation speed of 1 rpm at room temperature. Vickers microhardness saturated to a level of 220 Hv after the HPT processing and the grain size was refined to 120 nm at the state of the hardness saturation. Tensile tests were conducted with initial strain rates from 2.0 × 10-4 to 2.0 × 10-2 s-1 at temperatures as 200 °C and 250 °C (equivalent to 0.52Tm and 0.57Tm, respectively, where Tm is the melting point of the alloy). The HPT-processed samples for 3 revolutions exhibited superplastic elongations of 640% and 510% at 250 °C with initial strain rates of 2.0 × 10-3 s-1 and 2.0 × 10-2 s-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

807-810

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. G. Langdon, The mechanical properties of superplastic materials, Metall Trans 13A (1982) 689-701.

Google Scholar

[2] K. Oh-ishi, J. Boydon, T. R. McNelley, Processing, Deformation and Failure in Superplastic Aluminum Alloys: Applications of Orientation-Imaging Microscopy, J. Mater. Eng. Perform. 13 (2004) 710-719.

DOI: 10.1361/10599490421349

Google Scholar

[3] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[4] P. W. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure, Physical Review 48 (1935) 825-847.

DOI: 10.1103/physrev.48.825

Google Scholar

[5] G. Sakai, K. Nakamura, Z. Horita, T. G. Langdon, Application of high pressure torsion to bulk samples, Mater. Sci. Forum 503-504 (2006) 391-396.

DOI: 10.4028/www.scientific.net/msf.503-504.391

Google Scholar

[6] J. W Edington, K. N. Melton, C. P. Culter, Superplasticity, Prog. Mater. Sci. 21 (1976) 61-158.

Google Scholar

[7] F. C. Liu, Z. Y. Ma, Low-temperature superplasticity of friction stir processed Al-Zn-Mg-Cu alloy, Scripta Mater. 58 (2008) 667-670.

DOI: 10.1016/j.scriptamat.2007.11.044

Google Scholar

[8] K. T. Park, D. Y. Hwang, S. Y. Chang, D. H. Shin, Low-temperature superplastic behavior of a submicrometer-grained 5083 Al alloy fabricated by severe plastic deformation, Metall. Mater. Trans. A 33 (2002) 2859-2867.

DOI: 10.1007/s11661-002-0271-6

Google Scholar

[9] R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon, T. G. Langdon, Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes, Scripta Mater. 37 (1997) 1945-(1950).

DOI: 10.1016/s1359-6462(97)00387-4

Google Scholar

[10] I. Charit, R. S. Mishra, Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy, Acta Mater. 53 (2005) 4211-4223.

DOI: 10.1016/j.actamat.2005.05.021

Google Scholar