Ageing Characteristics of Al-Mg-(Ge,Si)-Cu Alloys

Article Preview

Abstract:

In order to elucidate some of the differences between Al-Mg-Si and Al-Mg-Ge alloys and the role of Cu, a series of Al-Mg-Ge, Al-Mg-Si and Al-Mg-Ge-Si alloys, some of them containing Cu, are investigated by positron annihilation lifetime spectroscopy during natural ageing. Al-Mg-Ge alloys show qualitatively the same evolution of positron lifetime τ1C with time as Al-Mg-Si alloys, namely an initial decrease, followed by a re-increase, after which τ1C drops to an equilibrium value. However, for alloys with equal Mg contents, Ge gives rise to a notably slower ageing kinetics than Si, pointing at effects of atomic size or solute-vacancy binding energies. Adding Cu to both Al-Mg-Ge and Al-Mg-Si alloys slows down the initial formation of clusters but promotes their further growth.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

971-976

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Matsuda, J. Nakamura et al., Mat. Sci. Forum 654-656 (2010) 930.

Google Scholar

[2] R. Bjørge, C. Dwyer, M. Weyland, P.N.H. Nakashima et al., Acta Mater. 60 (2012) 3239.

Google Scholar

[3] M. Liu, Y. Yan et al., Proceedings of ICAA-13, TMS and Wiley (2012) 1131.

Google Scholar

[4] J. Banhart, M.D.H. Lay, C.S.T. Chang, A.J. Hill, Phys. Rev. B 83 (2011) 014101.

Google Scholar

[5] M. Liu, J. Čižek, C.S.T. Chang, J. Banhart, this conference (2014).

Google Scholar

[6] M.D.H. Lay, H.S. Zurob, C.R. Hutchinson et al., Metall. Mater. Trans. 43A (2012) 4507.

Google Scholar

[7] M. Liu, PhD thesis, Technische Universität Berlin, Berlin, (2014).

Google Scholar

[8] R.K.W. Marceau, A. de Vaucorbeil et al., Acta Mater. 61 (2013) 7285.

Google Scholar

[9] H.S. Zurob, H. Seyedrezai, Scr. Mater. 61 (2009) 141.

Google Scholar

[10] T. Federighi, G. Thomas, Philos. Mag. 7 (1961) 127.

Google Scholar

[11] L.F. Mondolfo, Aluminium Alloys, Structure and Properties. London: Butterworth, (1976).

Google Scholar

[12] T.E.M. Staab, (2006) personal communication.

Google Scholar

[13] S. Hirosawa, T. Sato, Mater. Sci. Forum 283 (2007) 551.

Google Scholar

[14] P. Lang et al., Proceedings of PRICM-8, TMS (2013) 3181.

Google Scholar

[15] C. Wolverton, Acta Mater. 55 (2007) 5867.

Google Scholar

[16] M. Mantina, Y. Wang, L.Q. Che, Z.K. Liu, C. Wolverton, Acta Mater. 57 (2009) 4102.

Google Scholar

[17] A. Somoza, M.P. Petkov, K.G. Lynn, Phys. Rev. B 65 (2002) 094107.

Google Scholar

[18] S. Wenner, C.D. Marioara, S.J. Andersen, R. Holmestad, Int. J. Mat. Res. 103 (2012) 948.

Google Scholar

[19] D.W. Pashley et al., J. Inst. Met. London 94 (1966) 41.

Google Scholar

[20] D.K. Chatterjee, K.M. Entwistle, J. Inst. Met. London 101 (1973) 53.

Google Scholar

[21] H. Kimura, R.R. Hasiguti, Acta Met. 9 (1961) 1076.

Google Scholar

[22] A.I. Morley et al., Mater. Sci. Forum 519-521 (2006) 543.

Google Scholar

[23] F. Hashimoto, M. Ohta, J. Phys. Soc. Japan 19 (1964) 1331.

Google Scholar