The Influence of Mg and Ag on the Precipitation Kinetics and the Formation of the T1 Phase in Al-Cu-Li Alloys

Article Preview

Abstract:

Al-Cu-Li alloys are extensively used for aerospace applications. The main hardening phase is the T1 phase that precipitates as thin platelets on {111}Al planes. To facilitate its nucleation, different minor alloying elements are added and dislocations are introduced by cold deformation before the ageing treatment. The impact of these additions in combination with the presence of dislocations on precipitate nucleation and growth needs a deeper understanding. In this work, we investigated the precipitation kinetics of the T1 phase in alloys containing a common content of Cu and Li and different contents of minor solutes (Mg, Ag) where these elements are present either together or independently. A general overview on the precipitation kinetics was achieved by in-situ small-angle X-ray scattering and hardness measurements. The evaluation of precipitation kinetics reveals that magnesium plays an important role during precipitation by enhancing nucleation kinetics. Additionally, a smaller yet measureable effect of Ag, both in the presence and absence of Mg has been evidenced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

945-950

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Warner, Recently-Developed Aluminium Solutions for Aerospace Applications, Mater. Sci. Forum, Bd. 519–521, S. 1271–1278, (2006).

DOI: 10.4028/www.scientific.net/msf.519-521.1271

Google Scholar

[2] C. Giummarra, B. Thomas, und R. J. Rioja, New aluminium lithium alloys for aerospace applications, Proc. Light Met. Technol. Conf. (2007).

Google Scholar

[3] R. J. Rioja und J. Liu, The Evolution of Al-Li Base Products for Aerospace and Space Applications, Metall. Mater. Trans. A, Bd. 43, Nr. 9, S. 3325–3337, Sep. (2012).

DOI: 10.1007/s11661-012-1155-z

Google Scholar

[4] T. Warner, J. C. Ehrström, B. Chenal, und F. Eberl, Alcan's Innovative Aluminium-Based Solutions for Aerospace Applications, Light metal age, S. 18 – 21, (2009).

Google Scholar

[5] J. C. Huang und A. J. Ardell, On the Crystal Structure and Stability of the T1 Precipitates in Aged Al-Li-Cu Alloys, (1987).

Google Scholar

[6] S. Van Smaalen, A. Meetsma, J. L. De Boer, und P. M. Bronsveld, Refinement of the crystal structure of hexagonal Al2CuLi, J. Solid State Chem., Bd. 85, Nr. 2, S. 293–298, Apr. (1990).

DOI: 10.1016/s0022-4596(05)80086-6

Google Scholar

[7] P. Donnadieu, Y. Shao, F. De Geuser, G. A. Botton, S. Lazar, M. Cheynet, M. de Boissieu, und A. Deschamps, Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering, Acta Mater., Bd. 59, Nr. 2, S. 462–472, Jan. (2011).

DOI: 10.1016/j.actamat.2010.09.044

Google Scholar

[8] C. Dwyer, M. Weyland, L. Y. Chang, und B. C. Muddle, Combined electron beam imaging and ab initio modeling of T1 precipitates in Al–Li–Cu alloys, Appl. Phys. Lett., Bd. 98, Nr. 20, S. 201909–201909–3, Mai (2011).

DOI: 10.1063/1.3590171

Google Scholar

[9] W. A. Cassada, G. J. Shiflet, und E. A. Starke, Mechanism of Al2CuLi (T 1) nucleation and growth, Metall. Trans. A, Bd. 22, Nr. 2, S. 287–297, Feb. (1991).

DOI: 10.1007/bf02656798

Google Scholar

[10] W. A. Cassada, G. J. Shiflet, und E. A. Starke, The effect of plastic deformation on Al2CuLi (T 1) precipitation, Metall. Trans. A, Bd. 22, Nr. 2, S. 299–306, Feb. (1991).

DOI: 10.1007/bf02656799

Google Scholar

[11] B. . Gable, A. . Zhu, A. . Csontos, und E. . Starke Jr., The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Li–Cu–X alloy, J. Light Met., Bd. 1, Nr. 1, S. 1–14, Feb. (2001).

DOI: 10.1016/s1471-5317(00)00002-x

Google Scholar

[12] G. Itoh, Q. Cui, und M. Kanno, Effects of a small addition of magnesium and silver on the precipitation of T1 phase in an Al-4%Cu-1. 1%Li-0. 2%Zr alloy, Mater. Sci. Eng. A, Bd. 211, Nr. 1–2, S. 128–137, Juni (1996).

DOI: 10.1016/0921-5093(95)10157-8

Google Scholar

[13] R. Yoshimura, T. J. Konno, E. Abe, und K. Hiraga, Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ' and T1 phases, Acta Mater., Bd. 51, Nr. 14, S. 4251–4266, Aug. (2003).

DOI: 10.1016/s1359-6454(03)00253-2

Google Scholar

[14] B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, und M. Weyland, The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys, Acta Mater.

DOI: 10.1016/j.actamat.2012.12.041

Google Scholar

[15] S. C. Wang und M. J. Starink, Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys, Int. Mater. Rev. Vol. 50 Number 4 August 2005 Pp 193-21523.

DOI: 10.1179/174328005x14357

Google Scholar

[16] R. Yoshimura, T. J. Konno, E. Abe, und K. Hiraga, Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys, Acta Mater., Bd. 51, Nr. 10, S. 2891–2903, Juni (2003).

DOI: 10.1016/s1359-6454(03)00104-6

Google Scholar

[17] B. -P. Huang und Z. -Q. Zheng, Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al–Cu–Li–(Mg)–(Ag)–Zr–Ti alloys, Acta Mater., Bd. 46, Nr. 12, S. 4381–4393, Juli (1998).

DOI: 10.1016/s1359-6454(98)00079-2

Google Scholar

[18] D. L. Gilmore und E. A. S. Jr, Trace element effects on precipitation processes and mechanical properties in an Al-Cu-Li alloy, Metall. Mater. Trans. A, Bd. 28, Nr. 7, S. 1399–1415, Juli (1997).

DOI: 10.1007/s11661-997-0203-6

Google Scholar

[19] M. Murayama und K. Hono, Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy, Scr. Mater., Bd. 44, Nr. 4, S. 701–706, März (2001).

DOI: 10.1016/s1359-6462(00)00651-5

Google Scholar

[20] B. Gault, F. de Geuser, L. Bourgeois, B. M. Gabble, S. P. Ringer, und B. C. Muddle, Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al–Cu–Li–Mg–Ag alloy, Ultramicroscopy, Bd. 111, Nr. 6, S. 683–689, Mai (2011).

DOI: 10.1016/j.ultramic.2010.12.004

Google Scholar

[21] Z. Q. Zheng, S. Q. Liang, H. Xu, C. Y. Tan, und D. F. Yun, Effect of 0. 5% silver on the age hardening behaviour of an Al-Li-Cu-Mg-Zr alloy, J. Mater. Sci. Lett., Bd. 12, Nr. 14, S. 1111–1113, Jan. (1993).

DOI: 10.1007/bf00420537

Google Scholar

[22] F. De Geuser, F. Bley, und A. Deschamps, A new method for evaluating the size of plate-like precipitates by small-angle scattering, J. Appl. Crystallogr., Bd. 45, Nr. 6, Nov. (2012).

DOI: 10.1107/s0021889812039891

Google Scholar

[23] F. De Geuser und A. Deschamps, Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering, Comptes Rendus Phys., Bd. 13, Nr. 3, S. 246–256, avril (2012).

DOI: 10.1016/j.crhy.2011.12.008

Google Scholar

[24] T. Dorin, A. Deschamps, F. De Geuser, W. Lefebvre, und C. Sigli, Quantitative description of the T1 formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy, Philos. Mag., Bd. 0, Nr. 0, S. 1–19, 0.

DOI: 10.1080/14786435.2013.878047

Google Scholar

[25] L. Bourgeois, C. Dwyer, M. Weyland, J. -F. Nie, und B. C. Muddle, Structure and energetics of the coherent interface between the θ' precipitate phase and aluminium in Al–Cu, Acta Mater., Bd. 59, Nr. 18, S. 7043–7050, Okt. (2011).

DOI: 10.1016/j.actamat.2011.07.059

Google Scholar

[26] H. Fujita und C. Lu, An Electron Microscope study of G. P. Zones and θ'-Phase in Al-1. 6 at%Cu Crystals, Mater. Trans. JIM, Bd. 33, Nr. 10, S. 892–896, (1992).

DOI: 10.2320/matertrans1989.33.892

Google Scholar