Early-Stage Precipitation Phenomena and Composition-Dependent Hardening in Al-Mg-Si-(Cu) Alloys

Article Preview

Abstract:

Al-Mg-Si-(Cu), i.e. AA6xxx, alloys are widely used light alloys which can be effectively strengthened through precipitation hardening. The final microstructure, and thus properties, of these alloys after common artificial aging treatments are largely determined by the composition-dependent nano-scale clustering and precipitation that occur during the earliest stage of aging. Therefore, multi-length scale analysis of the earliest-stage of precipitation can provide critical knowledge in understanding the basis for the microstructural evolution during aging and attaining the desired microstructures and properties. Here, we investigate the effect of alloy composition on the evolution of early-stage clusters and precipitates during aging at 180°C using high resolution transmission electron microscopy. The results map a sequential evolution of clusters with an FCC structure but different morphology/orientation characteristics. GP-zones with structures other than FCC, also form in the early stages of aging. The composition-dependent kinetics of β” phase precipitation and hardening behavior are discussed in light of the results from differential scanning calorimetry experiments, microhardness measurements, and conventional transmission electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

933-938

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Esmaeili, X. Wang, D. Lloyd and W. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A 34 (2003) 751-763.

DOI: 10.1007/s11661-003-0110-4

Google Scholar

[2] S. Esmaeili and D. J. Lloyd, Effect of composition on clustering reactions in AlMgSi(Cu) alloys, Scripta Mater. 50 (2004) 155-158.

DOI: 10.1016/j.scriptamat.2003.08.030

Google Scholar

[3] S. Esmaeili and D. J. Lloyd, Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique, Mater. Charact. 55 (2005) 307-319.

DOI: 10.1016/j.matchar.2005.07.007

Google Scholar

[4] J. Buha, R. Lumley and A. Crosky, Precipitation and solute distribution in an interrupted-aged Al–Mg–Si–Cu alloy, Philos. Mag. 88 (2008) 373-390.

DOI: 10.1080/14786430701847949

Google Scholar

[5] S. Pogatscher, H. Antrekowitsch, H. Leitner, D. Pöschmann, Z. Zhang and P. Uggowitzer, Influence of interrupted quenching on artificial aging of Al–Mg–Si alloys, Acta Mater. 60 (2012) 4496-4505.

DOI: 10.1016/j.actamat.2012.04.026

Google Scholar

[6] S. Esmaeili, D. Vaumousse, M. W. Zandbergen, W. J. Poole, A. Cerezo and D. J. Lloyd, A study on the early-stage decomposition in the Al–Mg–Si–Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe, Philos. Mag. 87 (2007).

DOI: 10.1080/14786430701408312

Google Scholar

[7] A. Serizawa, S. Hirosawa and T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy, Metall. Mater. Trans. A 39 (2008) 243-251.

DOI: 10.1007/s11661-007-9438-5

Google Scholar

[8] J. Banhart, M. D. Lay, C. Chang and A. Hill, Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy, Phys. Rev. B 83 (2011) 014101.

DOI: 10.1103/physrevb.83.014101

Google Scholar

[9] S. Pogatscher, H. Antrekowitsch, H. Leitner, A. Sologubenko and P. Uggowitzer, Influence of the thermal route on the peak-aged microstructures in an Al–Mg–Si aluminum alloy, Scripta Mater. 68 (2013) 158-161.

DOI: 10.1016/j.scriptamat.2012.10.006

Google Scholar

[10] S. Esmaeili, D. Lloyd and W. Poole, Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111, Acta Mater. 51 (2003) 3467-3481.

DOI: 10.1016/s1359-6454(03)00167-8

Google Scholar

[11] S. Esmaeili and D. Lloyd, Modeling of precipitation hardening in pre-aged AlMgSi (Cu) alloys, Acta Mater. 53 (2005) 5257-5271.

DOI: 10.1016/j.actamat.2005.08.006

Google Scholar

[12] C. Chang and J. Banhart, Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy, Metall. Mater. Trans. A 42 (2011) 1960-(1964).

DOI: 10.1007/s11661-010-0596-5

Google Scholar

[13] C. D. Marioara, S. J. Andersen, J. Jansen and H. W. Zandbergen, Atomic model for GP-zones in a 6082 Al–Mg–Si system, Acta Mater 49 (2001) 321-328.

DOI: 10.1016/s1359-6454(00)00302-5

Google Scholar

[14] K. Li, M. Song, Y. Du and X. Fang, Effect of Minor Cu Addition on the Precipitation Sequence of an As-Cast Al-Mg-Si 6005 Alloy, Arch Metall Mater. 57 (2012) 457-467.

DOI: 10.2478/v10172-012-0047-y

Google Scholar

[15] A. K. Gupta and D. J. Lloyd, Study of precipitation kinetics in a super purity Al-0. 8 Pct Mg-0. 9 Pct Si alloy using differential scanning calorimetry, Metall. Mater. Trans. A 30A (1999) 879-890.

DOI: 10.1007/s11661-999-1021-9

Google Scholar

[16] Y. Ohmori, L. C. Doan and K. Nakai, Ageing processes in Al-Mg-Si alloys during continuous heating, Mater. Trans. 43 (2002) 246-255.

DOI: 10.2320/matertrans.43.246

Google Scholar

[17] A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok and E. Kozeschnik, Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys, Int. J. Mater. Res. 101 (2010) 1089-1096.

DOI: 10.3139/146.110396

Google Scholar

[18] S. Esmaeili and D. J. Lloyd, The role of copper in the precipitation kinetics of 6000 series Al alloys, Mater. Sci. Forum 519 (2006) 169-176.

DOI: 10.4028/www.scientific.net/msf.519-521.169

Google Scholar