[1]
S. Esmaeili, X. Wang, D. Lloyd and W. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A 34 (2003) 751-763.
DOI: 10.1007/s11661-003-0110-4
Google Scholar
[2]
S. Esmaeili and D. J. Lloyd, Effect of composition on clustering reactions in AlMgSi(Cu) alloys, Scripta Mater. 50 (2004) 155-158.
DOI: 10.1016/j.scriptamat.2003.08.030
Google Scholar
[3]
S. Esmaeili and D. J. Lloyd, Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique, Mater. Charact. 55 (2005) 307-319.
DOI: 10.1016/j.matchar.2005.07.007
Google Scholar
[4]
J. Buha, R. Lumley and A. Crosky, Precipitation and solute distribution in an interrupted-aged Al–Mg–Si–Cu alloy, Philos. Mag. 88 (2008) 373-390.
DOI: 10.1080/14786430701847949
Google Scholar
[5]
S. Pogatscher, H. Antrekowitsch, H. Leitner, D. Pöschmann, Z. Zhang and P. Uggowitzer, Influence of interrupted quenching on artificial aging of Al–Mg–Si alloys, Acta Mater. 60 (2012) 4496-4505.
DOI: 10.1016/j.actamat.2012.04.026
Google Scholar
[6]
S. Esmaeili, D. Vaumousse, M. W. Zandbergen, W. J. Poole, A. Cerezo and D. J. Lloyd, A study on the early-stage decomposition in the Al–Mg–Si–Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe, Philos. Mag. 87 (2007).
DOI: 10.1080/14786430701408312
Google Scholar
[7]
A. Serizawa, S. Hirosawa and T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy, Metall. Mater. Trans. A 39 (2008) 243-251.
DOI: 10.1007/s11661-007-9438-5
Google Scholar
[8]
J. Banhart, M. D. Lay, C. Chang and A. Hill, Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy, Phys. Rev. B 83 (2011) 014101.
DOI: 10.1103/physrevb.83.014101
Google Scholar
[9]
S. Pogatscher, H. Antrekowitsch, H. Leitner, A. Sologubenko and P. Uggowitzer, Influence of the thermal route on the peak-aged microstructures in an Al–Mg–Si aluminum alloy, Scripta Mater. 68 (2013) 158-161.
DOI: 10.1016/j.scriptamat.2012.10.006
Google Scholar
[10]
S. Esmaeili, D. Lloyd and W. Poole, Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111, Acta Mater. 51 (2003) 3467-3481.
DOI: 10.1016/s1359-6454(03)00167-8
Google Scholar
[11]
S. Esmaeili and D. Lloyd, Modeling of precipitation hardening in pre-aged AlMgSi (Cu) alloys, Acta Mater. 53 (2005) 5257-5271.
DOI: 10.1016/j.actamat.2005.08.006
Google Scholar
[12]
C. Chang and J. Banhart, Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy, Metall. Mater. Trans. A 42 (2011) 1960-(1964).
DOI: 10.1007/s11661-010-0596-5
Google Scholar
[13]
C. D. Marioara, S. J. Andersen, J. Jansen and H. W. Zandbergen, Atomic model for GP-zones in a 6082 Al–Mg–Si system, Acta Mater 49 (2001) 321-328.
DOI: 10.1016/s1359-6454(00)00302-5
Google Scholar
[14]
K. Li, M. Song, Y. Du and X. Fang, Effect of Minor Cu Addition on the Precipitation Sequence of an As-Cast Al-Mg-Si 6005 Alloy, Arch Metall Mater. 57 (2012) 457-467.
DOI: 10.2478/v10172-012-0047-y
Google Scholar
[15]
A. K. Gupta and D. J. Lloyd, Study of precipitation kinetics in a super purity Al-0. 8 Pct Mg-0. 9 Pct Si alloy using differential scanning calorimetry, Metall. Mater. Trans. A 30A (1999) 879-890.
DOI: 10.1007/s11661-999-1021-9
Google Scholar
[16]
Y. Ohmori, L. C. Doan and K. Nakai, Ageing processes in Al-Mg-Si alloys during continuous heating, Mater. Trans. 43 (2002) 246-255.
DOI: 10.2320/matertrans.43.246
Google Scholar
[17]
A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok and E. Kozeschnik, Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys, Int. J. Mater. Res. 101 (2010) 1089-1096.
DOI: 10.3139/146.110396
Google Scholar
[18]
S. Esmaeili and D. J. Lloyd, The role of copper in the precipitation kinetics of 6000 series Al alloys, Mater. Sci. Forum 519 (2006) 169-176.
DOI: 10.4028/www.scientific.net/msf.519-521.169
Google Scholar