Influence of the Citric Acid and Metal Cation Ratio on the Structural and Morphological Characteristics of Aluminum Oxide Synthesized by Pechini Method

Article Preview

Abstract:

Given the opportunities that aluminas present in relation to the broad field of applications to which they refer, the literature has reported great diversity in methodology to obtain these materials in the search of generating the best properties. In this way, the aim of this work is to evaluate the use of different citric acid and metallic cation ratio on the structural and morphological characteristics of the alumina synthesized by Pechini method and calcined at 1100°C. The samples were characterized by X-ray diffraction, thermal analysis, particle size and scanning electron microscopy. The results showed a large amount of loss of mass after pyrolysis. The α-alumina phase was achieved for the two studied ratio reaching values for crystallite size of 41.4 and 52.5 nm, crystallinity of 88 and 91.2%, agglomerates size of 12.3 and 14μm, for the synthesized samples 2:1 and 3:1, respectively. According to the SEM images, the changes in the citric acid: metallic cation ratio did not significantly modify the morphology of the alumina.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

133-138

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Mekasuwandumrong, P. Tantichuwet, C. Chaisuk, P Praserthdam, Impact of concentration and Si doping on the properties and phase transformation behavior of nanocrystalline alumina prepared via solvothermal synthesis, Mater. Chem. Phys. 107 (2008).

DOI: 10.1016/j.matchemphys.2007.06.060

Google Scholar

[2] J.K.M.F. Daguano, L.H.P. Teixeira, C. Santos, M.H. Koizumi, C.N.O. Elias, Compósito ZrO2-Al2O3 para Aplicação como Implante Odontológico, Rev. Mat. 11 (2006) 455 – 462.

DOI: 10.1590/s1517-70762006000400012

Google Scholar

[3] H.X. HE, Y. LIU, A novel method to synthesis mesoporous alumina with visible emission by thermolysis of Al-based coordination polymer, Mater. Letters. 76 (2012) 59-61.

DOI: 10.1016/j.matlet.2012.02.056

Google Scholar

[4] L.B. H Tanaka, J. Izario Filho, W.R. Monteiro, M.A.J. Zacharias, A.J. Rodrigues, G.G. Cortez, Síntese e caracterização de aluminas para aplicação como suporte de catalisador, INPE e Print. 2 (2004) 1-6.

Google Scholar

[5] R.H.R. Castro, D. Gouvêa, Efeito do vapor d'água na síntese pelo método do precursor da alumina contendo aditivos, Ceramic. 51 (2005) 407-411.

DOI: 10.1590/s0366-69132005000400016

Google Scholar

[6] S. Cava, S.M. Tebcherani, I.A. Souza, S.A. Pianaro, C.A. Paskocimas, E. Longo, J.A. Varela, Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method, Mater. Chem. Phys. 103 (2007) 394–399.

DOI: 10.1016/j.matchemphys.2007.02.046

Google Scholar

[7] D. Thomazini, M.V. Gelfuso, A.S.A. Chinelatto, A.L. Chinelatto, Sanson, F.K.; F. Teixeira Neto, Alumina ceramics obtained by chemical synthesis using conventional and microwave sintering, Ceram. 57 (2011) 341.

DOI: 10.1590/s0366-69132011000100006

Google Scholar

[8] M.P. Pechini, Metedology of preparing lead and alkaline: earth, litanates and niobates and coating. Method using the same to for a capacitor. U. S Patent 3. 330. 697, (1967).

Google Scholar

[9] A.C.F.M. Costa, M.A.F. Ramalho, L.S. Neiva, S. Alves-Jr, R.H.G.A. Kiminami, L. Gama, Avaliação do tamanho da partícula do ZnO obtido pelo método Pechini, Revista Eletrônica de Materiais e Processos, 2 (2007) 14-19.

Google Scholar

[10] T. Zaki, K.I. Kabel, H.H. Assan, Preparation of high pure α-Al2O3 nanoparticles at low temperatures using Pechini method, Ceram. Inter. 38 (2012) 2021-(2026).

DOI: 10.1016/j.ceramint.2011.10.037

Google Scholar

[11] E.R. Leite, C.M.G. Souza, E. Longo, J.A. Varela, Influence of polymerization on the synthesis of SrTiO3. Part I. Characteristics of the polymeric precursors and their thermal decomposition, Ceram. Inter. 21 (195) 143-152.

DOI: 10.1016/0272-8842(95)90903-v

Google Scholar

[12] W.D. Yang, Y.H. Chang, S.H. Huang, Influence of molar ratio of citric acid to metal ions on preparation of La0. 67Sr0. 33MnO3 materials via polymerizable complex process, J. Eur. Ceram. Soc. 25 (2005) 3611-3618.

DOI: 10.1016/j.jeurceramsoc.2004.09.028

Google Scholar

[13] L.V. Azarof, Elements in X-ray Crystallography. McGraw-Hill Book Company, New York, (1968).

Google Scholar

[14] M.M.M. Ruiz, L.A.P. Maqueda, T. Cordero, V. Balek, J. Subrt, N. Murafa, J.P. Cosp, High surface area α-alumina preparation by using urban waste, Ceram. Int. 35 (2009) 2111-2117.

DOI: 10.1016/j.ceramint.2008.11.011

Google Scholar

[15] J.M. Cartaxo, M.N. Galdino, R.R. Menezes, H.S. Ferreira, G.A. Neves, Síntese de alumina-α utilizando acetato de alumínio, Revista Eletrônica de Materiais e Processos. 6 (2011) 194-197.

Google Scholar

[16] V.V. Cordeiro, N.L. Freitas, K.M.S. Viana, G. Dias, A.C.F.M. Costa, H.L. Lira, Influence of the external heating type in the morphological and structural characteristics of alumina powder prepared by combustion reaction, Mater. Sci. Forum. 60-61 (2010).

DOI: 10.4028/www.scientific.net/msf.660-661.58

Google Scholar