Effect of Calcination Temperature in the Aluminum Oxide Synthesized by Pechini Method in the Citric Acid: Metal Cation Ratio of 2:1

Article Preview

Abstract:

Through the constant search by researchers to obtain materials with improved properties, literature has presented an annual increase in the number of articles that seek to optimize in the methodology used to prepare nanopowders. In this way, the aim of this work is to study how the calcined temperature (500, 600, 700, 800, 900, 1000, 1100 and 1200oC) changes the final properties of the alumina synthesized by Pechini method with citric acid: metallic cation ratio of 2:1. The alumina was characterized by thermal analysis, X-ray diffraction, particle size analysis and scanning electron microscopy. The results showed a total of mass loss of 61.6%. The alumina phase appear at 800°C of temperature, however the α-alumina only appear at 1100oC. The increase in the calcined temperature increases the crystallite size and the crystallinity of the alumina and the great value reached for the agglomerates diameter was 13μm for the alumina calcined at 1200oC. In relation to the morphology of the alumina, it was observed heterogeneous particles with different size and irregular geometry, with aspect of high density.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

139-144

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R. Inbaraj, R.M. Francis and N.V.A. Jaya: Ceram. Int. Vol. 38 (2012), p.4065.

Google Scholar

[2] A. Khanna and D.G. Bhat: Surf. Coat. Tech. Vol. 201 (2006), p.168.

Google Scholar

[3] P. Pocostales, P. Álvarez and F.J. Beltrán: Chem. Eng. J. Vol. 168 (2011), p.1289.

Google Scholar

[4] H.B. Lim, W.S. Cho and C.Y. Kim: Ceram. Int. Vol. 38 (2012), p.3069.

Google Scholar

[5] M.A. Rousseau, S.L. Mouel, D. Goutallier and S.V. Driessche: Rev. Chirurgie orthopédique et de l'Réparatrice appareil Moteur Vol. 90 (2004), p.741.

DOI: 10.1016/s0035-1040(04)70754-0

Google Scholar

[6] A.R. Hind, S.K. Bhargava and S.C. Grocott: Colloid. Surface A Vol. 146 (1999), p.359.

Google Scholar

[7] V.V. Cordeiro, N.L. Freitas, K.M.S. Viana, G. Dias, A.C.F.M. Costa and L. Lira: Mater. Sci. Forum Vol. 660 (2010), p.58.

Google Scholar

[8] L. Qu, C. He, Y. Yang and Z. Liu: Mater. Lett. Vol. 59 (2005), p.4034.

Google Scholar

[9] G. Ji, M. Li, G. Li, G. Gao, H. Zou, S. Gan and X. Xu: Powder Technol. Vol. 215–216 (2012), p. (2012).

Google Scholar

[10] H. Lei, L. Jiang and R. Chen: Powder Technol. Vol. 219 (2012), p.99.

Google Scholar

[11] H.X. He and Y. Liu: Mater. Lett. Vol. 76 (2012), p.59.

Google Scholar

[12] I.V. Babich, L.A. Davydenko, L.F. Sharanda, Y.V. Plyuto, M. Makkee and J.A. Moulijn: Thermoch. Acta Vol. 456 (2007), p.145.

DOI: 10.1016/j.tca.2007.02.010

Google Scholar

[13] M.T. Hernández and M. González: J. Eur. Ceram. Soc. Vol. 22 (2002), p.2861.

Google Scholar

[14] T. Zaki, K.I. Kabel and H.H. Assan: Ceram. Int. Vol. 38 (2012), p. (2021).

Google Scholar

[15] J.F.S. Bitencourt, A. Ventieri, K.A. Gonçalves, E.L. Pires, J.C. MIttani, S.H.A. Tatumi: J. Non-Cryst. Solids Vol. 356 (2010), p.2956.

DOI: 10.1016/j.jnoncrysol.2010.03.047

Google Scholar

[16] M.P. Pechini: Metedology of preparing lead and alkaline: earth, litanates and niobates and coating. Method using the same to for a capacitor, U. S Patent 3. 330. 697, (1967).

Google Scholar

[17] N.L. Freitas, E. Fagury-Neto, H.L. Lira, L. Gama, R.H.G.A. Kiminami and A.C.F.M. Costa: Mat. Sci. Forum Vols. 530-531 (2006), p.631.

Google Scholar

[18] M.C. Silva, M.C. Silva, R.B.L. Cunha, R.H.G.A. Kiminami, A.C.F.M. Costa and N.L. Freitas: 20° Congresso Brasileiro de Ciência dos Materiais (CBECIMAT). Joinville, 04-08 de Novembro 2012. Procceding.. Joinvile 2012. (SC).

Google Scholar