Synthesis and Characterization of Zirconium Oxide Systems with Yttrium Rich Rare Earth Concentrate Additives

Article Preview

Abstract:

In this work, the yttrium rich rare earth concentrate (Re2(CO3)3) was used as additive aiming stabilization of cubic an tetragonal phases at commercial zirconium oxide with 3% mol of yttrium oxide. The use of high purity rare earth oxide as additive is being commercially used and this work aims to demonstrate the potential use of lower cost additives to produce solid electrolyte for oxygen sensors and fuel cell applications. The powders for the additive production were synthesized by the controlled precipitation method. After synthesis, the powders were de-agglomerated using mechanical grinding and mixed to commercial zirconia to produce the compositions ZrO2:3% Mol Y2O3:ƞ % Mol Re2O3 (ƞ=3,4,5,6), followed by uniaxial press and sintering at 1500 0C in two hours. The obtained sintered densities were above 96% of theoretical. X-Ray diffractometric analysis and Rietweld refinement demonstrated the stabilization of cubic and tetragonal phases for all samples with yttrium rich rare earth concentrate additives. Finally the electric behavior of the evaluated samples was carried out with complex impedance spectroscopy, showing conductivity improvement for samples with the chosen additive. At 500 0C the sample A-9% had a conductivity of 1,11E-3 Ω-1.cm-1, well above of the sample without additive with conductivity 5,88E-4 Ω1.cm-1, indicative that use of yttrium rich rare earth concentrate as additive increases considerably the ionic conductivity of comercial zirconium oxide. Key words: rare earth concentrate, controlled precipitation, ionic conductivity

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

174-181

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Carda J., Alarcón J., Rincón J. M, (1992) Nuevos productos y tecnologías de esmaltes y pigmentos cerámicos. Su fabricación y utilización, Sociedad Española de Cerámica y Vidrio, Castellón de la Plana.

DOI: 10.3989/cyv.2000.v39.i5.777

Google Scholar

[2] Mineiro, (2008), Processamento e Caracterização Física e Mecânica de Cerâmicas de Zircônia-Ítria Total e Parcialmente Nanoestruturadas. Tese de Doutorado. Instituto Nacional de Pesquisas Espaciais-INPE, São José dos Campos.

Google Scholar

[3] Peters C. (2008). Grain-Size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells (SOFC)., Schriftendes Institut für Werkstoffe der Elektro technik, Universität Karlsruhe (TH).

Google Scholar

[4] Tadokoro S. K., Muccillo E. N. S. (2000), Zircônia Tetragonal policristalina. arte II: Microestrutura e Resistividade Elétrica., Cerâmica Vol. 46, 230.

DOI: 10.1590/s0366-69132001000200007

Google Scholar

[5] Muñoz, R (2010).

Google Scholar

[6] Hwang, M. K. (2006).

Google Scholar

[7] Putvinskis, (2003). Curvas de Calibração para Análise Quantitativa de Fases de Zircônias,. Laboratório Computacional de Análises Cristalografias e Cristalinas LabCACC. Universidade Estadual Paulista Araraquara.

Google Scholar

[8] Brook, R. J. (181). reparation and Eletrical Behavior of Zirconia Ceramics., Am. Ceramic. Soc. Vol 3. (272-85).

Google Scholar

[9] Caprioni E. (2007), Eletrólitos Sólidos à Base de óxido de Zircônio para a Detecção de Oxigênio. Tese de Doutorado, Instituto de pesquisas Energéticas e Nucleares-IPEN.

DOI: 10.11606/d.85.2003.tde-26062007-134849

Google Scholar

[10] D.Z. Florio, F. C. Fonseca, E. N. S. Muccillo, R. Muccillo (2004), Materiais cerâmicos para células a combustível, Cerâmica 50, 275-290.

DOI: 10.1590/s0366-69132004000400002

Google Scholar