[1]
H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics, 83 (1996) 1–16.
DOI: 10.1016/0167-2738(95)00229-4
Google Scholar
[2]
S. Badwal and S. Rajendran, Effect of micro- and nano-structures on the properties of ionic conductors, Solid State Ionics, 70–71 (1994) 83–95.
DOI: 10.1016/0167-2738(94)90291-7
Google Scholar
[3]
G. Christie, Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes, Solid State Ionics, 83 (1996) 17–27.
DOI: 10.1016/0167-2738(95)00155-7
Google Scholar
[4]
H. Ferkel and R. . Hellmig, Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behaviour, Nanostructured Materials, 11, (1999) 617–622.
DOI: 10.1016/s0965-9773(99)00348-7
Google Scholar
[5]
V. V. Kharton and F. M. B. Marques, Mixed ionic–electronic conductors: effects of ceramic microstructure on transport properties, Current Opinion in Solid State and Materials Science, 6 (2002) 261–269.
DOI: 10.1016/s1359-0286(02)00033-5
Google Scholar
[6]
Z. Shao, W. Zhou, and Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Progress in Materials Science, 57 (2012) 804–874.
DOI: 10.1016/j.pmatsci.2011.08.002
Google Scholar
[7]
M. P. Pechini, U. S. Patent No 3. 330. 697. pdf, (1967).
Google Scholar
[8]
P. Durán, F. Capel, D. Gutierrez, J. Tartaj, and C. Moure, Cerium (IV) oxide synthesis and sinterable powders prepared by the polymeric organic complex solution method, Journal of the European Ceramic Society, 22 (2002) 1711–1721.
DOI: 10.1016/s0955-2219(01)00483-6
Google Scholar
[9]
L. -W. Tai and P. a. Lessing, Modified resin–intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors, Journal of Materials Research, 7 (2011) 502–510.
DOI: 10.1557/jmr.1992.0502
Google Scholar
[10]
L. -W. Tai and P. a. Lessing, Modified resin–intermediate processing of perovskite powders: Part II. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders, Journal of Materials Research, 7 (2011) 511–519.
DOI: 10.1557/jmr.1992.0511
Google Scholar
[11]
J. Ma, T. S. Zhang, L. B. Kong, P. Hing, Y. J. Leng, and S. H. Chan, Preparation and characterization of dense Ce0. 85Y0. 15O2−δ ceramics, Journal of the European Ceramic Society, 24 (2004) 2641–2648.
DOI: 10.1016/j.jeurceramsoc.2003.09.023
Google Scholar
[12]
S. F. Santos, M. C. de Andrade, J. a. Sampaio, a. B. da Luz, and T. Ogasawara, Synthesis of ceria-praseodymia pigments by citrate-gel method for dental restorations, Dyes and Pigments, 75 (2007) 574–579.
DOI: 10.1016/j.dyepig.2006.07.005
Google Scholar
[13]
R. A. Rocha and E. N. S. Muccillo, Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique, Materials Research Bulletin, 38 (2003)1979–(1986).
DOI: 10.1016/j.materresbull.2003.09.025
Google Scholar
[14]
Y. -P. Fu, Y. -S. Chang, and S. -B. Wen, Microwave-induced combustion synthesis and electrical conductivity of Ce1−xGdxO2−1/2x ceramics, Materials Research Bulletin, 41 (2006) 2260–2267.
DOI: 10.1016/j.materresbull.2006.04.016
Google Scholar
[15]
J. Chandradass, B. Nam, and K. H. Kim, Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348 (2009) 130–136.
DOI: 10.1016/j.colsurfa.2009.07.012
Google Scholar
[16]
K. M. S. Khalil, L. Elkabee, and B. Murphy, Preparation and characterization of thermally stable porous ceria aggregates formed via a sol–gel process of ultrasonically dispersed cerium(IV) isopropoxide, Microporous and Mesoporous Materials, 78 (2005).
DOI: 10.1016/j.micromeso.2004.09.019
Google Scholar
[17]
S. Cizauskaite, V. Reichlova, G. Nenartaviciene, a. Beganskiene, J. Pinkas, and a. Kareiva, Sol–gel preparation and characterization of gadolinium aluminate, Materials Chemistry and Physics, 102 (2007) 105–110.
DOI: 10.1016/j.matchemphys.2006.11.016
Google Scholar
[18]
Z. Khakpour, a. a. Youzbashi, a. Maghsoudipour, and K. Ahmadi, Synthesis of nanosized gadolinium doped ceria solid solution by high energy ball milling, Powder Technology, 214 (2011) 117–121.
DOI: 10.1016/j.powtec.2011.08.001
Google Scholar
[19]
Y. Ikuma, K. Takao, M. Kamiya, and E. Shimada, X-ray study of cerium oxide doped with gadolinium oxide fired at low temperatures, Materials Science and Engineering: B, 99 (2003) 48–51.
DOI: 10.1016/s0921-5107(02)00546-9
Google Scholar
[20]
B. D. Cullity, Elements of X-Ray Diffraction. Massachusetts: Addison-Wesley, 1956, p.514.
Google Scholar
[21]
M. J. Godinho, C. Ribeiro, R. F. Gonçalves, E. Longo, and E. R. Leite, High-density nanoparticle ceramic bodies, Journal of Thermal Analysis and Calorimetry, 111 (2012) 1351–1355.
DOI: 10.1007/s10973-012-2507-z
Google Scholar