Synthesis of Gadolinium Doped Ceria Ceramic Powder by Polymeric Precursor Method (Pechini)

Article Preview

Abstract:

The synthesis by polymeric precursors method (Pechini) was used to acquire gadolinium doped ceria forming Ce0,8Gd0,2O1,9 system, reaching high stoichiometric control features and nanosized particles to form dense solid electrolyte of high ionic conductivity. The synthesis was performed with cerium and gadolinium nitrates hexahydrates, citric acid and ethylene glycol. After the pre-calcination at 250°C/18h a resin was obtained like an expanded foam (puff). According to the iterature, this fact indicates that there is a reduction of agglomerates amount in a ceramic powder. A thermogravimetry-differential thermal analysis evaluated the thermal behavior of the resin. Infrared spectroscopy determined the organic matter and nitrates presence, before and after the calcination process. The X-ray diffraction identified the fluorite-type structure and was determined the crystallite size by the Scherrer equation in 22 and 46 nm for the powder calcined respectively at 600 and 800°C. The scanning electron microscopy evaluated the agglomeration degree and the morphology of the powders.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

182-188

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics, 83 (1996) 1–16.

DOI: 10.1016/0167-2738(95)00229-4

Google Scholar

[2] S. Badwal and S. Rajendran, Effect of micro- and nano-structures on the properties of ionic conductors, Solid State Ionics, 70–71 (1994) 83–95.

DOI: 10.1016/0167-2738(94)90291-7

Google Scholar

[3] G. Christie, Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes, Solid State Ionics, 83 (1996) 17–27.

DOI: 10.1016/0167-2738(95)00155-7

Google Scholar

[4] H. Ferkel and R. . Hellmig, Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behaviour, Nanostructured Materials, 11, (1999) 617–622.

DOI: 10.1016/s0965-9773(99)00348-7

Google Scholar

[5] V. V. Kharton and F. M. B. Marques, Mixed ionic–electronic conductors: effects of ceramic microstructure on transport properties, Current Opinion in Solid State and Materials Science, 6 (2002) 261–269.

DOI: 10.1016/s1359-0286(02)00033-5

Google Scholar

[6] Z. Shao, W. Zhou, and Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Progress in Materials Science, 57 (2012) 804–874.

DOI: 10.1016/j.pmatsci.2011.08.002

Google Scholar

[7] M. P. Pechini, U. S. Patent No 3. 330. 697. pdf, (1967).

Google Scholar

[8] P. Durán, F. Capel, D. Gutierrez, J. Tartaj, and C. Moure, Cerium (IV) oxide synthesis and sinterable powders prepared by the polymeric organic complex solution method, Journal of the European Ceramic Society, 22 (2002) 1711–1721.

DOI: 10.1016/s0955-2219(01)00483-6

Google Scholar

[9] L. -W. Tai and P. a. Lessing, Modified resin–intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors, Journal of Materials Research, 7 (2011) 502–510.

DOI: 10.1557/jmr.1992.0502

Google Scholar

[10] L. -W. Tai and P. a. Lessing, Modified resin–intermediate processing of perovskite powders: Part II. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders, Journal of Materials Research, 7 (2011) 511–519.

DOI: 10.1557/jmr.1992.0511

Google Scholar

[11] J. Ma, T. S. Zhang, L. B. Kong, P. Hing, Y. J. Leng, and S. H. Chan, Preparation and characterization of dense Ce0. 85Y0. 15O2−δ ceramics, Journal of the European Ceramic Society, 24 (2004) 2641–2648.

DOI: 10.1016/j.jeurceramsoc.2003.09.023

Google Scholar

[12] S. F. Santos, M. C. de Andrade, J. a. Sampaio, a. B. da Luz, and T. Ogasawara, Synthesis of ceria-praseodymia pigments by citrate-gel method for dental restorations, Dyes and Pigments, 75 (2007) 574–579.

DOI: 10.1016/j.dyepig.2006.07.005

Google Scholar

[13] R. A. Rocha and E. N. S. Muccillo, Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique, Materials Research Bulletin, 38 (2003)1979–(1986).

DOI: 10.1016/j.materresbull.2003.09.025

Google Scholar

[14] Y. -P. Fu, Y. -S. Chang, and S. -B. Wen, Microwave-induced combustion synthesis and electrical conductivity of Ce1−xGdxO2−1/2x ceramics, Materials Research Bulletin, 41 (2006) 2260–2267.

DOI: 10.1016/j.materresbull.2006.04.016

Google Scholar

[15] J. Chandradass, B. Nam, and K. H. Kim, Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348 (2009) 130–136.

DOI: 10.1016/j.colsurfa.2009.07.012

Google Scholar

[16] K. M. S. Khalil, L. Elkabee, and B. Murphy, Preparation and characterization of thermally stable porous ceria aggregates formed via a sol–gel process of ultrasonically dispersed cerium(IV) isopropoxide, Microporous and Mesoporous Materials, 78 (2005).

DOI: 10.1016/j.micromeso.2004.09.019

Google Scholar

[17] S. Cizauskaite, V. Reichlova, G. Nenartaviciene, a. Beganskiene, J. Pinkas, and a. Kareiva, Sol–gel preparation and characterization of gadolinium aluminate, Materials Chemistry and Physics, 102 (2007) 105–110.

DOI: 10.1016/j.matchemphys.2006.11.016

Google Scholar

[18] Z. Khakpour, a. a. Youzbashi, a. Maghsoudipour, and K. Ahmadi, Synthesis of nanosized gadolinium doped ceria solid solution by high energy ball milling, Powder Technology, 214 (2011) 117–121.

DOI: 10.1016/j.powtec.2011.08.001

Google Scholar

[19] Y. Ikuma, K. Takao, M. Kamiya, and E. Shimada, X-ray study of cerium oxide doped with gadolinium oxide fired at low temperatures, Materials Science and Engineering: B, 99 (2003) 48–51.

DOI: 10.1016/s0921-5107(02)00546-9

Google Scholar

[20] B. D. Cullity, Elements of X-Ray Diffraction. Massachusetts: Addison-Wesley, 1956, p.514.

Google Scholar

[21] M. J. Godinho, C. Ribeiro, R. F. Gonçalves, E. Longo, and E. R. Leite, High-density nanoparticle ceramic bodies, Journal of Thermal Analysis and Calorimetry, 111 (2012) 1351–1355.

DOI: 10.1007/s10973-012-2507-z

Google Scholar