Development and Characterization of the Al2O3-YAG Ceramic Composites

Article Preview

Abstract:

YAG (Y3Al5O12) and Al2O3 ceramics have high resistance to oxidation and corrosion in harsh environments and high temperatures, which turns into a quite attractive material as compared to other ceramics. Thus, lately oxide ceramic YAG has been extensively used as reinforcement phase to Al2O3 in order to obtain a composite with improved mechanical properties. This research focused on the development of sintered Al2O3-Y2O3 powder mixtures for the production of Al2O3-YAG composite. Powder mixtures composed of 63.65:36.35wt.% and 80.00:20.00wt.% of Al2O3 and Y2O3, respectively, were milled by planetary milling for 2h. The compositions were compacted by cold uniaxial pressing, at 70 MPa, for 30s. The two mixtures were sintered at 1500 and 1600°C for 3h. The samples were evaluated for relative density, shrinkage, weight loss, and X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM) was used for microstructural characterization. The X-Ray Diffraction showed the presence of Al2O3 and Y3Al5O12 as crystalline phases in both compositions. Samples composed by 80:20wt.% of Al2O3/Y2O3 powder sintered at 16000C-3h presented the higher relative density ranging around 86% of theoretical density.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

383-388

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Palmero, A. Simone, C. Esnouf, G. Fantozzi, and L. Montanaro, Comparasion among different sintering routes for preparing alumina-YAG nanocomposites, Journal of European Ceramic Society. 26 (2006) 941-947.

DOI: 10.1016/j.jeurceramsoc.2004.12.020

Google Scholar

[2] S. Ochiai, M. Hojo, A. Mitani, N. Nakagawa, S. Sakata, K. Sato, T. Takahashi, T. Ueda, Y. Waku, Deformation and Fracture Behavior of an Al2O3/YAG Composite from Room Temperature to 2023 K, Composites Science and Technology. 61 (2001) 2117-2128.

DOI: 10.1016/s0266-3538(01)00159-2

Google Scholar

[3] T. A. Parthasarathy, T. Mah, L. E. Matson, Processing, Structure and Properties of Alumina-YAG Eutectic Composites, Journal of Ceramic Processing Research. 5 (2004) 380-390.

Google Scholar

[4] Y. Waku, N. Nakagawa, T. Wakamoto, H. Otsubo, K. Shimizu, Y. Kohtoku, High Temperature Strength and Thermal Stability of Unidirectionally Solidified Al2O3/YAG Eutectic Composite, Journal of Materials Science. 33(1998) 1217-1225.

DOI: 10.1023/a:1004377626345

Google Scholar

[5] W. Q. Li, L. Gao, Processing, Microstructure and Mechanical Properties of 25 vol% YAG-Al2O3 Nanocomposites, NanoStructured Materials. 11 (1999) 1073–1080.

DOI: 10.1016/s0965-9773(99)00396-7

Google Scholar

[6] H. Wang, L. Gao, Preparation and Microstructure of Polycrystalline Al2O3–YAG Composites, Ceramics International. 27 (2001) 721-723.

DOI: 10.1016/s0272-8842(01)00009-8

Google Scholar

[7] S. A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, Compressibility and sinterability of Al2O3 – YAG nanocomposite powder synthesized by an aqueous sol – gel method, Journal of Alloys and Compounds. 506 (2010) 604-644.

DOI: 10.1016/j.jallcom.2010.07.030

Google Scholar

[8] P. Palmero, C. Esnouf, Phase and microstructural evolution of yttrium-doped nanocrystalline alumina: A contribution of advanced microscopy techniques, Journal of the European Ceramic Society. 31 (2011) 507-516.

DOI: 10.1016/j.jeurceramsoc.2010.10.037

Google Scholar

[9] R. Torrecillas, M. Schehl, L. A. Díaz, J. L. Menéndez, J. S. Moya, Creep behavior of alumina/YAG nanocomposites obtained by a colloid processing route, Journal of the European Ceramic Society. (2006) 1-8.

DOI: 10.1016/j.jeurceramsoc.2006.04.177

Google Scholar

[10] S. Wang, T. Akatsu, Y. Tanabe, E. Yasuda, Phase Compositions and Microstructural Characteristics of Solidified Al2O3-Rich Spinel Solid Solution YAG Composite, Journal of the European Ceramic Society. 20 (2000) 39-43.

DOI: 10.1016/s0955-2219(99)00073-4

Google Scholar

[11] H. Wang, L. Gao, et al., Mechanical properties and microstructures of Al2O3-5 vol%-YAG composites, Journal of the European Ceramic Society. 21 (2001) 779-783.

DOI: 10.1016/s0955-2219(00)00262-4

Google Scholar

[12] Powder Diffraction File Inorganics Phases: alphabetical index, inorganics phases, JCPDS / international centre for diffraction data, Swarthmore, Pennsylvania, (1979).

Google Scholar

[13] P. Palmero, N. Valentina, J. Chevalier, G. Fantozzi, and L. Montanaro, Alumina-based nanocomposites obtained by doping with inorganic salt solutions: Application to immiscible and reactive systems, Journal of European Ceramic Society. 29 (2009).

DOI: 10.1016/j.jeurceramsoc.2008.05.047

Google Scholar

[14] R. F. Cabral, M. H. Prado da Silva, L. H. L. Louro, J. B. Campos, C. R. C. Costa, E. S. Lima, Processamento e caracterização morfológica do compósito Al2O3-YAG aditivado com nióbia, Cerâmica. 56 (2010) 129-134.

DOI: 10.1590/s0366-69132010000200006

Google Scholar

[15] R. F. Cabral, L. H. L. Louro, M. H. Prado da Silva, J. B. Campos, E. S. Lima, Síntese e caracterização do compósito Al2O3-YAG e do Al2O3-YAG e Al2O3 aditivados com Nb2O5, Cerâmica. 58 (2012) 14-19.

DOI: 10.1590/s0366-69132012000100004

Google Scholar

[16] R. F. Cabral, M. H. Prado da Silva, E. S. Lima, SINTERIZAÇÃO DO COMPÓSITO Al2O3–YAG COM ADITIVAÇÃO DO Nb2O5, Revista Militar de Ciência e Tecnologia. 1° trimestre (2012) 3-9.

DOI: 10.1590/s0366-69132012000100004

Google Scholar

[17] E. S. Lima, R. F. Cabral, L. H. L. Louro, M. H. Prado da Silva, J. B. Campos, FORMAÇÃO DO COMPÓSITO BIFÁSICO Al2O3-YAG ADITIVADO COM Nb2O5, Revista Militar de Ciência e Tecnologia. 2° Trimestre (2012) 3-9.

DOI: 10.1590/s0366-69132012000100004

Google Scholar