[1]
H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (2000) 1-29.
Google Scholar
[2]
H.K. Bowen, Basic research needs on high-temperature ceramics for energy applications, Mater. Sci. Eng. 44 (1980) 1-56.
Google Scholar
[3]
R.C. Flagan, in Aerosol Science: Industry, Health and Environment vol. 1, S. Masuda, K. Takahashi (Eds. ), Pergamon Press, (1990).
Google Scholar
[4]
F. Boulch, E. Djurado, Structural changes of rare-earth-doped, nanostructured zirconia solid solution, Solid State Ionics 157 (2003) 335-340.
DOI: 10.1016/s0167-2738(02)00230-8
Google Scholar
[5]
M. Gaudon, E. Djurado, N.H. Menzler, Morphology and sintering bevaviour of yttria stabilised zirconia (8-YSZ) powders synthesized by spray pyrolysis, Ceram. Int. 30 (2004) 2295-2303.
DOI: 10.1016/j.ceramint.2004.01.010
Google Scholar
[6]
H. Ishizawa, O. Sakurai, N. Mizutani, M. Kato, Homogeneous Y2O3-stabilized ZrO2 powder by spray pyrolysis method, Am. Ceram. Soc. Bull. 65 (1986) 1399-1404.
Google Scholar
[7]
T.J. Gardner, G.L. Messing, Magnesium salt decomposition and morphological development during evaporative decomposition of solutions, Thermochim. Acta 78 (1984) 17-27.
DOI: 10.1016/0040-6031(84)87128-2
Google Scholar
[8]
T. Rudin, K. Wegnaer, S.E. Pratsinis, Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors, J. Nanoparticle Res. 13 (2011) 2715-2725.
DOI: 10.1007/s11051-010-0206-x
Google Scholar
[9]
T. Gonzalez-Carreno, M.P. Morales, C.J. Serna, Barium ferrite nanoparticles prepared directly by aerosol pyrolysis, Mater. Lett. 43 (2000) 97-101.
DOI: 10.1016/s0167-577x(99)00238-4
Google Scholar
[10]
G.L. Messing, S.C. Zhang, G.P. Jayanthi, Ceramic powder synthesis by spray-pyrolysis, J. Am. Ceram. Soc. 76 (1993) 2707-2726.
DOI: 10.1111/j.1151-2916.1993.tb04007.x
Google Scholar
[11]
B. C. H. Steel, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001) 345-352.
Google Scholar
[12]
U. Anselmi-Tamburini, M.T. Buscaglia, M. Viviani, M. Bassoli, C. Bottino, V. Buscaglia, P. Nanni, Z.A. Munir, Solid-state synthesis and spark plasma sintering of submicron BaYxZr1-xO3-x/2 (x=0, 0. 08 and 0. 16) ceramics, J. Eur. Ceram. Soc. 26 (2006).
DOI: 10.1016/j.jeurceramsoc.2005.04.022
Google Scholar
[13]
M. M. Bucko, J. Oblakowski, Preparation of BaZrO3 nanopowders by spray pyrolysis method, J. Eur. Ceram. Soc. 27 (2007) 3625-3628.
Google Scholar
[14]
P. A. Stuart, T. Unno, R. A. Rocha, E. Djurado, S. J. Skinner, The synthesis and sintering behaviour of BaZr0. 9Y0. 1O3-d powders prepared by spray pyrolysis, J. Eur. Ceram. Soc. 29 (2009) 697-702.
DOI: 10.1016/j.jeurceramsoc.2008.07.004
Google Scholar
[15]
P. I. Dahl, H. L. Lein, Y. Yu, J. Tolchard, T. Grande, M. -A. Einarsrud, C. Kjolseth, T. Norby, R. Haugsrud, Microstructural characterization and electrical properties of spray pyrolyzed conventionally sintered or hot-pressed BaZrO3 and BaZr0. 9Y0. 1O3-d, Solid State Ionics 182 (2011).
DOI: 10.1016/j.ssi.2010.11.032
Google Scholar
[16]
D. H. Charlesworth, W. R. Marshall, Jr., Evaporation from drops containing dissolved solids, AIChE J. 6 (1960) 9-23.
DOI: 10.1002/aic.690060104
Google Scholar