Morphological Characterization by SEM, TEM and AFM of Nanoparticles and Functional Nanocomposites Based on Natural Rubber Filled with Oxide Nanopowders

Article Preview

Abstract:

Nanocomposites were prepared from mixture of different concentrations of ferroelectric nanoparticles in an elastomeric matrix based on the vulcanized natural rubber. The morphological characterization of nanocomposites was carried out using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The nanocrystalline ferroelectric oxide is potassium strontium niobate (KSN) with stoichiometry KSr2Nb5O15, and was synthesized by the chemical route using a modified polyol method, obtaining particle size and microstrain equal to 20 nm and 0.32, respectively. These ferroelectric nanoparticles were added into the natural rubber in concentrations equal to 1, 3, 5, 10, 20 and 50 phr (parts per hundred of rubber) forming ferroelectric nanocomposites (NR/KSN). Using morphological characterization, we identified the maximum value of surface roughness at low concentrations, in particular, sample with 3 phr of nanoparticles and factors such as encapsulation and uniformity in the distribution of nanoparticles into the natural rubber matrix are investigated and discussed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Lanfredi, G. Palacio, F. S. Bellucci, C. V. Colin and M. A. L. Nobre: J. Phys. D: Appl. Phys. Vol. 45 (2012), p.435302.

Google Scholar

[2] S. Dursun and S. Alkoy: Adv. Mater. Res. Vol. 445 (2012), p.481.

Google Scholar

[3] M.H. Flaifel, S. H Ahmad, M.H. Abdullah and B.A. Al-Asbahi: Cryogenics Vol. 52 (2012), p.523.

Google Scholar

[4] Q. Xu, Y. Yao, Z. Ma and Z. Xia: Sci. Adv. Mater. Vol. 4 (2012), p.888.

Google Scholar

[5] F.S. Bellucci, L.O. Salmazo, E.R. Budemberg, M.R. da Silva, M.A. Rodríguez-Pérez, M.A.L. Nobre and A.E. Job: J. Nanosci. Nanotechnol. Vol. 12 (2012), p.2691.

DOI: 10.1166/jnn.2012.5694

Google Scholar

[6] F.S. Bellucci, E.R. Budemberg, M.A.L. Nobre, J.A. Saja, R.F. Aroca, M.A. Rodríguez-Pérez and A.E. Job: Sci. Adv. Mater. Vol. 5 (2013), p.637.

DOI: 10.1166/sam.2013.1498

Google Scholar

[7] R.J. Joseyphus and B. Jeyadevan: Phys. Chem. Solids Vol. 72 (2011), p.1212.

Google Scholar

[8] S. Lanfredi, I.O. Brito, C. Polini and M.A.L. Nobre:J. Appl. Spectroscopy Vol. 79 (2012), p.254.

Google Scholar

[9] A. Daigle, J. Modest, A. L. Geiler, S. Gillette, Y. Chen,M. Geiler, B. Hu, S. Kim, K. Stopher, C. Vittoria and V. G. Harris: Nanotechnology Vol. 22 (2011), p.305708.

DOI: 10.1088/0957-4484/22/30/305708

Google Scholar

[10] B. Ozbas, S. Toki, B.S. Hsiao, B. Chu, R.A. Register, I.A. Aksay, R.K. Prud'homme and D.H. Adamson: J. Polym. Sci. Part B: Polym. Phys. Vol. 50 (2012), p.718.

DOI: 10.1002/polb.23060

Google Scholar

[11] J. Baller, N. Becker, M Ziehmer, M. Thomassey, B. Zielinski, U. Müller and R. Sanctuary: Polymer Vol. 50 (2009), p.3211.

DOI: 10.1016/j.polymer.2009.05.020

Google Scholar