Magnetic Study of Nanoferritas CoFe2O4 Obtained by Reaction of Combustion

Article Preview

Abstract:

The present work aims to study the magnetic properties of nanoferrita cobalt obtained by combustion reaction. The structural feature as well as the magnetic behavior when in the presence of a magnet and magnetic measurements was investigated. The resulting samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), magnetic behavior when in the presence of a magnet and magnetic measurements. The results indicated the phase single the spinel ferrite CoFe2O4, with high intensity of diffraction peaks indicating that the samples are crystalline and nanoparticle formation. The characteristic bands of spinel were observed for nanoferritas CoFe2O4. The ferrite nanoparticles were strongly attracted when in presence the magnet presenting a saturation magnetization of 58.0 emu/g, coercivity of 1.14 kOe.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 798-799)

Pages:

402-406

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. P. Poole, F. J. Owens. Introduction to nanotechnology. 1ª ed., Wiley-Interscience: New York, 37 p, (2003).

Google Scholar

[2] J. A. Rodríguez, M. Fernandez-Gracía. The World of oxide nanomaterials. In: Synthesis, properties and applications of oxide nanomaterials. 1ªed. Haboken: John Wiley & Sons, Inc, 731, (2007).

Google Scholar

[3] L. F. Pavon, O. K. Okamoto. Reviewing Basic Sciences (2007).

Google Scholar

[4] A. C. F. M. Costa, R. A. Torquato, F. A. P. Cunha, L. Gama, D. R. Cornejo, S. M. Rezende, R. H. G. A Kiminami. Cerâmica (2008).

Google Scholar

[5] P. T. A. Santos, H. L. Lira, L. Gama, F. Argolo, H. M. C. Andrade, A. C. F. M. Costa. Materials Science Forum (2010).

Google Scholar

[6] D.C. Venerus, J. Buongiorno. Applied Rheology (2010).

Google Scholar

[7] J. Song, L. Wang, X.U. Naicen, Q. Zhang. Journal Rare Earths (2010).

Google Scholar

[8] A. Chatzipavlidis, P. Bilalis, E.K. Efthimiadou, N. Boukos, G.C. Kordas. Langmuir (2011).

Google Scholar

[9] J.G. Lee, J.Y. Park, Y.J. OH, C.S. Kim. Journal Applied Physics (1998).

Google Scholar

[10] P.C. Dorsey, P. Lubitz, D.B. Chrisey, J.S. Horowitz. Journal Applied Physics (1996).

Google Scholar

[11] V. Pillai, D.O. Shah. Journal of Magnetism and Magnetic Materials (1996).

Google Scholar

[12] R. SKOMSKI. Nanomagnetics, Journal of Physics: Condensed Matter (2003).

Google Scholar

[13] A. C. F. M. Costa, R. H. G. A. Kiminami, M. R. Morelli. Combustion Synthesis Processing of Nanoceramics. Handbook of Nanoceramics and their based Nanodevices, Ed. Americam Scientific Publishers. Chapter 80, (2009).

Google Scholar

[14] R. H. G. A. Kiminami, D. C. Folz, D. E. Clarck. Ceramic Bulletin (2000).

Google Scholar

[15] S. R. Jain, K. C. Adiga, V. Pai Verneker. Flame, (1981).

Google Scholar

[16] P. T. A. Santos. By Combustion Synthesis Reactions and Characterization of Ni-Zn ferrite doped with ions Cu2+ and Al3+. Thesis, 106 fl. Campina Grande-PB, (2011).

Google Scholar

[17] M. S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar, S. S. Suryavanshi. Journal of Alloys and Compounds (2011).

Google Scholar

[18] J. Sun, Z. Wang, Y. Wang, Y. Zhu, T. Shen, L. Pang, K. Wei, F. LI. Materials Science and Engineering B (2012).

Google Scholar