[1]
R.T. Leah, N.P. Brandon, and P. Aguiar, Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500–600°C, Journal of Power Sources, 145 (2005) 336–352.
DOI: 10.1016/j.jpowsour.2004.12.067
Google Scholar
[2]
K.R. Reddy and K. Karan, Sinterability, Mechanical, Microstructural, and Electrical Properties of Gadolinium-Doped Ceria Electrolyte for Low-Temperature Solid Oxide Fuel Cells, Journal of Electroceramics, 15 (2005) 45–56.
DOI: 10.1007/s10832-005-1099-4
Google Scholar
[3]
M. Khandelwal, a. Venkatasubramanian, T.R.S. Prasanna, and P. Gopalan, Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate, Journal of the European Ceramic Society, 31 (2011).
DOI: 10.1016/j.jeurceramsoc.2010.10.027
Google Scholar
[4]
M.J. Godinho, C. Ribeiro, R.F. Gonçalves, E. Longo, and E.R. Leite, High-density nanoparticle ceramic bodies, Journal of Thermal Analysis and Calorimetry, 111 (2012) 1351–1355.
DOI: 10.1007/s10973-012-2507-z
Google Scholar
[5]
A. Moure, J. Tartaj, and C. Moure, Synthesis, sintering and electrical properties of yttria–calcia-doped ceria, Journal of the European Ceramic Society, 29 (2009) 2559–2565.
DOI: 10.1016/j.jeurceramsoc.2009.02.014
Google Scholar
[6]
D. Segal, Chemical synthesis of ceramic materials, Journal of Materials Chemistry, 7 (1997) 1297–1305.
Google Scholar
[7]
Z. Shao, W. Zhou, and Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Progress in Materials Science, 57 (2012) 804–874.
DOI: 10.1016/j.pmatsci.2011.08.002
Google Scholar
[8]
T. Zhang and J. Ma, Dense submicron-grained Ce0. 8Gd0. 2O2−δ ceramics for SOFC applications, Scripta Materialia, 50 (2004) 1127–1130.
DOI: 10.1016/j.scriptamat.2004.01.028
Google Scholar
[9]
L.W. Tai and P.A. Lessing, Modified resin–intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors, Journal of Materials Research, 7 (2011) 502–510.
DOI: 10.1557/jmr.1992.0502
Google Scholar
[10]
L.W. Tai and P.A. Lessing, Modified resin–intermediate processing of perovskite powders: Part II. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders, Journal of Materials Research, 7 (1992) 511–519.
DOI: 10.1557/jmr.1992.0511
Google Scholar
[11]
J. Chandradass, B. Nam, and K.H. Kim, Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348 (2009) 130–136.
DOI: 10.1016/j.colsurfa.2009.07.012
Google Scholar
[12]
K.M.S. Khalil, L.A. Elkabee, and B. Murphy, Preparation and characterization of thermally stable porous ceria aggregates formed via a sol–gel process of ultrasonically dispersed cerium (IV) isopropoxide, Microporous and Mesoporous Materials, 78 (2005).
DOI: 10.1016/j.micromeso.2004.09.019
Google Scholar
[13]
S. Cizauskaite, V. Reichlova, G. Nenartaviciene, A. Beganskiene, J. Pinkas, and A. Kareiva, Sol–gel preparation and characterization of gadolinium aluminate, Materials Chemistry and Physics, 102 (2007) 105–110.
DOI: 10.1016/j.matchemphys.2006.11.016
Google Scholar
[14]
Z. Khakpour, A.A. Youzbashi, A. Maghsoudipour, and K. Ahmadi, Synthesis of nanosized gadolinium doped ceria solid solution by high energy ball milling, Powder Technology, 214 (2011) 117–121.
DOI: 10.1016/j.powtec.2011.08.001
Google Scholar
[15]
Y. Ikuma, K. Takao, M. Kamiya, and E. Shimada, X-ray study of cerium oxide doped with gadolinium oxide fired at low temperatures, Materials Science and Engineering, 99 (2003) 48–51.
DOI: 10.1016/s0921-5107(02)00546-9
Google Scholar
[16]
J. Ma, T.S. Zhang, L.B. Kong, P. Hing, Y.J. Leng, and S.H. Chan, Preparation and characterization of dense Ce0. 85Y0. 15O2−δ ceramics, Journal of the European Ceramic Society, 24 (2004) 2641–2648.
DOI: 10.1016/j.jeurceramsoc.2003.09.023
Google Scholar
[17]
X. Guan, H. Zhou, Z. Liu, Y. Wang, and J. Zhang, High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells, Materials Research Bulletin, 43 (2008) 1046–1054.
DOI: 10.1016/j.materresbull.2007.04.027
Google Scholar
[18]
S. Badwal and S. Rajendran, Effect of micro- and nano-structures on the properties of ionic conductors, Solid State Ionics, 70–71 (1994) 83–95.
DOI: 10.1016/0167-2738(94)90291-7
Google Scholar