[1]
S. T Coelho. Mechanism to implement co- generation of electricity from biomass, a model to the state of São Paulo. (in Portuguese). Doctor. Thesis, Inter-units Post Graduate Program in Energy, São Paulo University, São Paulo, Brazil (1999).
DOI: 10.21475/ajcs.18.12.08.pne975
Google Scholar
[2]
J. Goldemberg. Research and development in the área of energy. (in Portuguese) São Paulo Perspc. 14 (3) (2000) 91-97.
Google Scholar
[3]
G.M. Jannuzzi. An evaluation of recent activities in renewable energy in Brazil and reflexions for the future. (in Portuguese). Energy Discussion Paper nº 2. 64-01/03, Campinas, S.P., Brazil, (2003).
Google Scholar
[4]
O. Seye, L.A.B. Cortez, E.O. Gomes, E. Olivares. Direct burning of grass. (in Portuguese). Biomass integrated Project. In proceedings of the Rural Area Energy Meeting, Campinas, São Paulo, S. P, (2003).
Google Scholar
[5]
M. Dondi, G. Ercolani, G. Guarini et al, Orimulsion fly ash in clay bricks – Part 1: Composition and thermal behavior of ash. J. European Ceramic Soc. 22 (2002) 1729-1735.
DOI: 10.1016/s0955-2219(01)00493-9
Google Scholar
[6]
M. Dondi, G. Guarini, M. Raimondo et al, Orimulsion fly ash in clay bricks – Part 2: Technological behavior of clay/ash mixtures. J. European Ceramic Soc. 22 (2002) 1737-1747.
DOI: 10.1016/s0955-2219(01)00494-0
Google Scholar
[7]
M. Dondi, G. Guarini, M. Raimondo et al, Orimulsion fly ash in clay bricks – Part 3: Chemical stability of ashs – bearing products. J. European Ceramic Soc. 22 (2002) 1749-1758.
DOI: 10.1016/s0955-2219(01)00495-2
Google Scholar
[8]
D.G. Pinati. R.A. Conte. M.C. Borlini, C.M.F. Vieira, S.N. Monteiro, Incorporation of the ash from cellulignin into vitrified ceramic tiles. J. European Ceramic Soc. 26 (2006) 305-310.
DOI: 10.1016/j.jeurceramsoc.2004.11.009
Google Scholar
[9]
M.C. Borlini, J.L.C. C Mendonça, C.M.F. Vieira, S.N. Monteiro. Influence of sintering temperature on the physical, mechanical and microstructural properties of red ceramic incorporated with sugarcane bagasse ash. (in Portuguese). Rev. Mater. 11 (4) (2006).
Google Scholar
[10]
C.M.F. Vieira, S.N. Monteiro. Incorporation of solid wastes in red ceramics. An updated review. Rev. Mater. 14 (2009) 881-905.
DOI: 10.1590/s1517-70762009000300002
Google Scholar
[11]
A.M.F.D. Silva, L.S. Lovise, C.M.F. Vieira, S.N. Monteiro. Use of ahs from the incineration of elephant Grass (Pennistim purpureums Shawm) into clayey ceramic. Mater. Sci. Forum 727-728 (2012) 993-998.
DOI: 10.4028/www.scientific.net/msf.727-728.993
Google Scholar
[12]
American Society for Testing and Materials – ASTM. Water absorption, apparent porosity and apparent specific gravity of fired whiteware products, C 373-72, USA, (1972).
DOI: 10.1520/c0373-14
Google Scholar
[13]
American Society for Testing and Materials – ASTM. Flexural properties of ceramic whiteware materials, C 674-77, USA, (1977).
Google Scholar
[14]
Brazilian Association for Technical Norms – ABNT. Ceramic components - Roofing tiles – Terminology, requirements, and testing methods, NBR 15310, (2009).
Google Scholar
[15]
S.N. Monteiro, C.M.F. Vieira. Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Applied Clay Science 27 (2004) 229-234.
DOI: 10.1016/j.clay.2004.03.002
Google Scholar
[16]
S.N. Monteiro, C.M.F. Vieira. Characterization of clays from Campos dos Goytacazes, north of Rio de Janeiro (Brazil). Tile & Brick Intl. 18 (2002) 152-157.
Google Scholar