[1]
Hansen W W, Janson S W, Helvajian H. Reduction in ignition energy for single-shot microthrusters using pulsedlaser excitation[C]. Proceedings of SPIE. 2002, 4760: 743-751.
DOI: 10.1117/12.482144
Google Scholar
[2]
La Torre F, Kenjereš S, Moerel J L, et al. Hybrid simulations of rarefied supersonic gas flows in micro-nozzles[J]. Journal of Computers and Fluids, 2011, 49(1): 312-322.
DOI: 10.1016/j.compfluid.2011.06.008
Google Scholar
[3]
Horisawa H, Sawada F, Onodera K, et al. Numerical simulation of micro-nozzle and micro-nozzle-array flow field characteristics[J]. Vacuum, 2008, 83(1): 52-56.
DOI: 10.1016/j.vacuum.2008.03.097
Google Scholar
[4]
Torre F L, Kenjeres S, Kleijn C R, et al. Effects of wavy surface roughness on the performance of micronozzles[J]. Journal of Propulsion and Power, 2010, 26(4): 655-662.
DOI: 10.2514/1.44828
Google Scholar
[5]
Chen W, Fan W, Zhang Q, et al. Experimental investigation of nozzle effects on thrust and inlet pressure of an air-breathing pulse detonation engine[J]. Chinese Journal of Aeronautics, 2012, 25(3): 381-387.
DOI: 10.1016/s1000-9361(11)60399-3
Google Scholar
[6]
Lin Laixing. Micro-propulsion system for modern small satellites[J]. Spacecraft Engineering, 2010, (006): 13-20.
Google Scholar
[7]
http: /www. gizmag. com/kickstarter-university-michigan-cubesat-plasma-engine/28198/[EB/OL].
Google Scholar
[8]
Köhler J, Bejhed J, Kratz H, et al. A hybrid cold gas microthruster system for spacecraft[J]. Sensors and Actuators A: Physical, 2002, 97: 587-598.
DOI: 10.1016/s0924-4247(01)00805-6
Google Scholar
[9]
Bayt R L, Breuer K S, Ayon A A. DRIE-fabricated nozzles for generating supersonic flows in micropropulsion systems[C]. Proc. Sensors and Actuators Workshop (Hilton Head, USA), 1998: 312-315.
DOI: 10.31438/trf.hh1998.72
Google Scholar
[10]
Modica F, Ferraris E, Trotta G, et al. Fabrication of micro-nozzles via μ-eDM process[C]. AIP Conference Proceedings, 2011: 1261-1266.
DOI: 10.1063/1.3552356
Google Scholar
[11]
Louwerse M C, Jansen H V, Groenendijk M N W, et al. Nozzle fabrication for micropropulsion of a microsatellite[J]. Journal of Micromechanics and Microengineering, 2009, 19(4): 1-9.
DOI: 10.1088/0960-1317/19/4/045008
Google Scholar
[12]
Chu W S, Beak C I, Ahn S H, et al. Rapid prototyping and testing of 3D micro rockets using mechanical micro machining[J]. Journal of Mechanical Science and Technology, 2006, 20(1): 85-93.
DOI: 10.1007/bf02916203
Google Scholar
[13]
Louisos W F, Alexeenko A A, Hitt D L, et al. Design considerations for supersonic micronozzles[J]. International Journal of Manufacturing Research, 2008, 3(1): 80-113.
DOI: 10.1504/ijmr.2008.016453
Google Scholar
[14]
Wang Dan, Wu Jie, Gu Lin, et al. Critical techniques of ultrasonic machining for micro laval-nozzles of microcrystalline-mica-ceramics[J]. Journal of Solid Rocket Technology, 2010, 33(6): 698-702.
Google Scholar
[15]
Jung K B, Song W J, Chun D M, et al. Coating of Ni powders through micronozzle in a nano particle deposition system[J]. Metals and Materials International, 2010, 16(3): 465-467.
DOI: 10.1007/s12540-010-0618-2
Google Scholar
[16]
Ramirez C. Meso-machining of miniature space system components[D]. University of Texas at El Paso, (2007).
Google Scholar