Boron-Doped Ultra/Nanocrystalline Diamond Films Obtained with Different Growth Times and Boron Doping Levels

Article Preview

Abstract:

In this work, the achievement and characterization of boron-doped nanocrystalline diamond films is presented. A series of experiments varying boron doping levels from 2,000 to 30,000 ppm and film growth times during 6, 10 and 16 h were performed. These films were analyzed by Scanning Electron Microscoy (SEM), Atomic Force Microscopy (AFM), Raman spectroscopy and Cyclic Voltammetry (CV) measurements. The results showed that the films presented two morphologies: ultra and nanocrystalline diamond. From Raman spectroscopy, the doping level increase for all the films, independent of growth time, increased the boron acceptor number and it was confirmed by Mott-Schottky plot (MSP). Electrochemical response showed the influence of boron content in the work potential window, mainly for films grown during 6 h. However, the reversibility was almost independent on the boron content for samples grown during 16 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-157

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.A. Williams, M. Daenena, J. D'Haen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesládek, D.M. Gruen: Diamond Relat. Mater. Vol. 15 (2006), p.654.

DOI: 10.1016/j.diamond.2005.12.009

Google Scholar

[2] O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman: Diamond Relat. Mater. Vol. 17 (2008), p.1080.

DOI: 10.1016/j.diamond.2008.01.103

Google Scholar

[3] A.F. Azevedo, M.R. Baldan, N.G. Ferreira: Inter. J. Electrochem (2012), Article ID 508453.

Google Scholar

[4] A.F. Azevedo, N.A. Braga, F.A. Souza, J.T. Matsushima, M.R. Baldan, N.G. Ferreira: Diam. Relat. Mater. Vol. 19 (2010), p.462.

Google Scholar

[5] L. Grieten, S.D. Janssens, A. Ethirajan, N. Vanden Bon, M. Ameloot, L. Michiels, K. Haenen, P. Wagner: Phys. Status Solidi A Vol. 208 (2011), p. (2093).

DOI: 10.1002/pssa.201100122

Google Scholar

[6] O. Tall, N. Jaffrezic-Renault, M. Sigaud, O. Vittori: Electroanalysis Vol. 19 (2007), p.1152.

DOI: 10.1002/elan.200603834

Google Scholar

[7] M. Bernard, A. Deneuville, P. Muret: Diamond Relat. Mater. Vol. 13 (2004), p.282.

Google Scholar

[8] J. Cifre, J. Puigdollers, M.C. Polo, J. Esteve: Diamond Relat. Mater. Vol. 3 (1994), p.628.

Google Scholar

[9] A.C. Ferrari, J. Robertson: Philos. Trans. R. Soc. Lond. A Vol. 362 (2004), p.2477.

Google Scholar

[10] P.W. May, W.J. Ludlow, M. Hannaway, P.J. Heard, J.A. Smith, K.N. Rosser: Diamond Relat. Mater. Vol. 17 (2008), p.105.

Google Scholar

[11] Y.V. Pleskov: Russ. J. Electrochem. Vol. 38 (2002), p.1275.

Google Scholar

[12] A.E. Fischer, Y. Show, G.M. Swain: Anal. Chem. Vol. 76 (2004), p.2553.

Google Scholar

[13] A. Kraft: Int. J. Electrochem. Sci. Vol. 2 (2007), p.355.

Google Scholar

[14] N.G. Ferreira, L.L.G. Silva, E.J. Corat, V.J. Trava-Airoldi: Diamond Relat. Mater. Vol. 11 (2002), p.1523.

Google Scholar

[15] P. Chen, R.L. McCreery: Anal. Chem. Vol. 68 (1996), p.3958.

Google Scholar