Investigation of Boron Doped Nanocrystalline Diamond Films Grown on Porous Silicon Substrate under Different Doping Concentrations

Abstract:

Article Preview

The production and characterization of porous silicon (PS) samples were studied as well as their use as substrates to grow boron doped nanocrystalline diamond (NCD) films. PS represents a suitable material for diamond growth due to its large number of nucleation sites and surface area, becoming an excellent material for porous electrodes. NCD films were grown by chemical vapor deposition (CVD) technique by balancing H2/CH4/Ar gas mixture, at two different boron levels. Doping was conducted by an additional hydrogen line passing through a bubbler containing B2O3 dissolved in methanol. Two ratios of boron/carbon were used of 2000 and 20000 ppm in the bubbler solution. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction were used to characterize the films as well as the PS substrate. Results showed that it is possible to obtain NCD films on PS substrate with good quality at different doping levels.

Info:

Periodical:

Edited by:

Francisco Ambrozio Filho and Aloisio Nelmo Klein

Pages:

158-162

Citation:

L. M. da Silva et al., "Investigation of Boron Doped Nanocrystalline Diamond Films Grown on Porous Silicon Substrate under Different Doping Concentrations", Materials Science Forum, Vol. 802, pp. 158-162, 2014

Online since:

December 2014

Export:

Price:

$38.00

[1] X.G. Zhang: Journal of Electrochemical Society Vol. 151 (2004), p. C69.

[2] Z. Sui et al.: Applied Physics Letter Vol. 60 (1992) 2086-(2088).

[3] E.K. Propst, P. A. Kohl: Journal of Electrochemical Society Vol. 141 (1994), p.1006.

[4] C.G. Kang, et al.: Journal of the Korean Physical Society Vol. 42 (2003), p. S693.

[5] B. Cho et al.: Microelectronic Engineering Vol. 89 (2012), p.92.

[6] N.G. Ferreira, et al.: Diamond and Related Materials Vol. 14 (2005), p.441.

[7] D.M. Gruen: Annual Review of Materials Research Vol. 29 (1999), p.211.

[8] S. Matsumoto: Thin Solid Films Vol. 368 (2000), p.231.

[9] A.F. Azevedo et al. Química Nova Vol. 29 (2006), p.129.

[10] N.G. Ferreira et al.: Diamond and Related Materials Vol. 12 (2003), p.596.

[11] R.C.M. Barros, et al.: Química Nova Vol. 28 (2005), p.317.

[12] X. Liu et al.: Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 412 (2012), p.82.

[13] R.A. Campos et al.: Vacuum Vol. 89 (2013), p.21.

[14] C.R.B. Miranda Filmes de diamante nanocristalino infiltrado em substratos de silício poroso através das técnicas CVD/CVI. Doutorado (Tese). São José dos Campos, 2009. Instituto Nacional de Pesquisas Espaciais (INPE). (SP).

[15] C.H. Cho et al.: Journal of Korean Physical Society Vol. 33 (1998), p.292.

[16] P.G. Abramof, Silício poroso obtido por ataque químico. Doutorado (Tese). São José dos Campos, 2008. Instituto Nacional de Pesquisas Espaciais (INPE). (SP).

[17] P. Kumar: ISRN Nanotechnology 2011 (2011), p.1.

[18] G. Cicala, et al.: Diamond and Related Materials Vol. 14 (2005), p.421.

[19] A.F. Azevedo, et al.: Diamond and Related Material Vol. 17 (2008), p.1137.

[20] F. Silva et al., Formation of (110) texture during nanocrystalline diamond growth: an X-ray diffraction study. 14 (2005) 398-403.

DOI: https://doi.org/10.1016/j.diamond.2004.11.019

[21] S.C. Ramos et al.: Journal of Vacuum Science and Technology A. Vol. 28 (2010), p.26.

[22] F.A. Souza, et al.: Chemical Vapor Deposition Vol. 18 (2012), p.159.

[23] R. Issaoui et al.: Physica Status Solidi Vol. 208 (2011), p. (2023).

Fetching data from Crossref.
This may take some time to load.