Micro, Nano and Ultranano-Crystalline Diamond Deposition

Article Preview

Abstract:

This is a comparative experimental study of the micro, nanoand ultranano-crystalline diamond deposition. The Hot Filament Chemical Vapor Deposition (HFCVD) reactor deposits the films using different deposition parameters. Scanning Electron Microscopy and Field Emission Scanning Electron Microscopy let morphology inspection. Visible-Raman scattering loaded to estimating relative induced stress, by the graphite peak shift and associated with the defect incorporation and sp2 bond enhancement. The x-ray diffraction confirmed the diamond crystallinity, where Scherrer ́s equations estimate crystallite size and diamond renucleation rates. In this work we propose a defect increasing relative graphite incorporation with the transition of micro, nanoto ultranano-crystalline diamond deposition. Besides this, we propose that this increase defects follows the increase diamond renucleation rates and decreases in the induced stress films. Included is a discussion of the possible reasons for these observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-173

Citation:

Online since:

December 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Kumar, K. Panda, S. Dash, C. Popov, J.P. Reithmaier, B.K. Panigrahi, A.K. Tyagi, B. Raj: AIP Advances Vol. 2 (2012), p.032164.

Google Scholar

[2] V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi: Nat. Nanotechnol. Vol. 7 (2012), p.11.

Google Scholar

[3] E.C. Almeida, A.F. Azevedo, M.R. Baldan, N.A. Braga, J.M. Rosolen, N.G. Ferreira: Chem. Phys. Lett. Vol. 438 (2007), p.47.

Google Scholar

[4] R.A. Campos, A. Contin, V.J. Trava-Airoldi, D.M. Barquete, E.J. Corat: Journal of ASTM International Vol. 8 (2012).

Google Scholar

[5] R.A. Campos, V.J. Trava-Airoldi, O.R. Bagnato, J.R. Moro, E.J. Corat: Vacuum Vol. 89 (2013), p.21.

DOI: 10.1016/j.vacuum.2012.09.007

Google Scholar

[6] O.A. Williams: Semicond. Sci. Technol. Vol. 21 (2006), p. R 49.

Google Scholar

[7] O.A. Williams, S. Curat, J.E. Gerbi, D.M. Gruen, R.B. Jackman: Appl. Phys. Lett. Vol. 85 (2004), p.1680.

DOI: 10.1063/1.1829716

Google Scholar

[8] P. Bajaj, D. Akin, A. Gupta, D. Sherman, B. Shi, O. Auciello, R. Bashir: Biomed. Microdev. Vol. 9 (2007), p.787.

Google Scholar

[9] D.C. Barbosa, P.R.P. Barreto, V.W. Ribas, V.J. Trava-Airoldi, E.J. Corat, Diamond nanostructures growth, in: H.S. Nalwa (Eds), Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers vol. 13 (2011), pp.59-78.

Google Scholar

[10] O.A. Williams, M. Daenen, J. D'Haen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesládek, D.M. Gruen: Diamond Relat. Mater. Vol. 15 (2006), p.654.

DOI: 10.1016/j.diamond.2005.12.009

Google Scholar

[11] K. Tsugawa, S. Kawaki, M. Ishihara, J. Kim, Y. Koga, H. Sakakita, H. Koguchi, M. Hasegawa: Diamond Relat. Mater. Vol. 20 (2011), p.833.

DOI: 10.1016/j.diamond.2011.03.031

Google Scholar

[12] Z. Khalaj; M. Ghoranneviss; S. Nasirilaheghi; Z. Ghorannevis; R. Hatakeyama: Chin. J. Chem. Phys. Vol. 23 (2010), p.689.

Google Scholar

[13] D.C. Barbosa, P. Hammer, V.J. Trava-Airoldi, E.J. Corat: Diamond Relat. Mater. Vol. 23 (2012), p.112.

Google Scholar

[14] V. Mortet, L. Zhang, M. Eckert, J. D'Haen, A. Soltani, M. Moreau, D. Troadec, E. Neyts, J. Jaeger, J. Verbeeck, A. Bogaerts, G.V. Tendeloo, K. Haenen, P. Wagner: Phys. Status Solidi A Vol. 9 (2012), p.1675.

DOI: 10.1002/pssa.201200581

Google Scholar

[15] T. Lohner, P. Csíkvári, P. Petrik, G. Hárs: Appl. Surf. Sci. Vol. 281 (2013), p.113.

Google Scholar

[16] A. Heiman, E. Lakin, E. Zolotoyabko, A. Hoffman: Diamond Relat. Mater. Vol. 11 (2002), p.601.

Google Scholar

[17] L.V. Azaroff: Elements of X-Ray Crystallography. (McGraw-Hill, New York, 1968).

Google Scholar

[18] A.C. Ferrari, J. Robertson: Phys. Rev. B Vol. 63 (2001), p.121405.

Google Scholar

[19] S.M. Huang, Z. Sun, Y.F. Lu, M.H. Hong: Surf. Coat. Tech. Vol. 151 (2002), p.263.

Google Scholar

[20] P.K. Chu, L. Li: Mater. Chem. Phys. Vol. 96 (2006), p.253.

Google Scholar

[21] J. Robertson: Surf. Coat. Technol. Vol. 50 (1992), p.185.

Google Scholar

[22] S.C. Ramos, A.F. Azevedo, M.R. Baldan, N.G. Ferreira: J. Vac. Sci. Technol. A Vol. 28 (2010), p.27.

Google Scholar