Characterization of Nitrogen Doped Diamond Electrodes Produced by Hot Filament Chemical Vapor Deposition

Article Preview

Abstract:

The purpose of this work is to study the structural and morphological modification of the surface of the n-type diamond electrodes as a function of nitrogen doping. The characterizations of these electrodes were made using Raman Spectroscopy, Contact Angle, X-ray diffraction and Scanning Electron Microscopy (SEM). The nitrogen-doped diamond (NDD) electrodes were produced using Hot Filament-assisted Chemical Vapor Deposition method (HFCVD) from methane, hydrogen and nitrogen in the gas mixture. The results from Raman spectroscopy show that the diamond films obtained with nitrogen addition presented one large band at 1100-1700 cm-1. The SEM images showed that the variation in the nitrogen doping influenced the growth rate of films by promoting changes in the sizes of grains from microcrystalline to nanocrystalline texture. This behavior supported the results obtained from X-ray diffraction analyses. It was possible to verify a decrease in the crystallite size as a function of the nitrogen increase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-185

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[2] R. Torz-Piotrowska, A. Wrzyszczyński, K. Paprocki, M. Szreiber, C. Uniszkiewicz, E. Staryga: Journal of Achievements in Materials and Manufacturing Engineering Vol. 37 (2009), p.2.

Google Scholar

[3] E. Staryga, G.W. Bąk, K. Fabisiak, L. Klimek, A. Rylski, A. Olborska, M. Kozanecki, J. Grabarczyk: Vacuum Vol. 85 (2010), p.518.

DOI: 10.1016/j.vacuum.2010.01.025

Google Scholar

[4] J. Stotter, J. Zak, Z. Behier, Y. Show, G.M. Swain: Analytical Chemistry Vol. 74 (2002), p.5924.

Google Scholar

[5] S.T. Kshirsagar, R.B. Kshirsagar, P.S. Patil, A.V. Kulkarni, A.B. Mandale, A.B. Gaikwad, S.P. Gokhale: Diamond and Related Materials Vol. 14 (2005), p.232.

DOI: 10.1016/j.diamond.2004.11.042

Google Scholar

[6] W. MullerSebert, E. Worner, F. Fuchs, C. Wild, and P. Koidl: Appl. Phys. Lett. Vol. 68 (1996), p.759.

Google Scholar

[7] J.A. Smith, J.B. Wills, H.S. Moores, A.J. Orr-Ewing and M.N.R. Ashfolda: J. Appl. Phys. Vol. 92 (2002), p.672.

Google Scholar

[8] G.Z. Cao, J.J. Schermer, W.L.P. van Enckevort, W.A.L.M. Elst, L.J. Giling: J. Appl. Phys. Vol. 79 (1996), p.1357.

Google Scholar

[9] Y.K. Liu, P.L. Tso, D. Pradhan, I.N. Lin, M. Clark, Y. Tzeng: Diamond and Related Materials Vol. 14 (2005), p. (2059).

Google Scholar

C.J. Tang, A.J. Neves, S. Pereira, A.J.S. Fernandes, J. Grácio, M.C. Carmo: Diamond and Related Materials Vol. 17 (2008), pp.72-78.

DOI: 10.1016/j.diamond.2007.10.022

Google Scholar

[11] Y.V. Pleskov, M.D. Krotova, V.V. Elkin, V.G. Ralchenko, A.V. Saveliev, S.M. Pimenov, P.Y. Lim: Electrochimica Acta Vol. 52 (2007), p.5470.

DOI: 10.1016/j.electacta.2007.03.006

Google Scholar

[12] L. Bergmann, R.J. Nemanich: J. Appl. Phys. Vol. 78 (1995), p.6709.

Google Scholar

[3] R.S. Tsang, C.A. Rego, P.W. May, M.N.R. Ashfold, K.N. Rosser: Diamond and Related Materials Vol. 6 (1997), p.247.

Google Scholar

[4] D.V. Musale, S.R. Sainkar, S.T. Kshirsagar: Diamond and Related Materials Vol. 11 (2002), p.75.

Google Scholar

[15] N.M.S. Marins, R.P. Mota, R.Y. Honda, P.A.P. Nascente, M.E. Kayama, K.G. Kostov, M.A. Algatti, N.C. Cruz, E.C. Rangel: Surf. & Coat. Technol. Vol. 206 (2011), p.640.

DOI: 10.1016/j.surfcoat.2011.06.058

Google Scholar

[16] R. Erz, W. Doütter, K. Jung, H. Ehrhardt: Diamond and Related Materials Vol. 2 (1993), p.449.

Google Scholar