Preparation of Fe/N Co-Doped TiO2 Powders by Mild Hydrothermal Method

Article Preview

Abstract:

Yellow colored anatase Fe/N co-doped TiO2 powders have been successfully synthesized by one step hydrothermal method at a lower temperature. The grain size was about 10 nm and the specific surface area of the powders ranged from 160 to 166 m2/g. The light absorption of Fe/N co-doped TiO2 powders was enhanced in the visible light region of 400~500 nm and a new absorption peak at about 470 nm appeared when the Fe/Ti ratio exceeded 0.5%. The visible light photoactivity of Fe/N co-doped TiO2 powders has been greatly improved than that of un-doped TiO2 powders under visible light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

217-220

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. B. Chen, S. S. Mao. Chem. Rev. Vol. 107(2007), p.2891.

Google Scholar

[2] L. G. Devi, R. Kavitha. Appl. Catal. B: Environ. Vol. 140-141(2013), p.559.

Google Scholar

[3] M. F. Abdel-Messih, M. A. Ahmed, A. S. El-Sayed. J. Photoch. Photobio. A Vol. 260(2013), p.1.

Google Scholar

[4] H. Park, Y. Park, W. Kim, et al. J. Photoch. Photobio. C Vol. 15(2013), p.1.

Google Scholar

[5] Y. Q. Gai, J. B. Li, S. S. Li, et al. Phys. Rev. Lett. Vol. 102(2009), 036402.

Google Scholar

[6] M. Khan, J. N. Xu, W. B. Cao, et al. J. Alloys. Compd. Vol. 513(2012), p.539.

Google Scholar

[7] R. Jaiswal, N. Patel, D. C. Kothari, et al. Appl. Catal. B: Environ. Vol. 126(2012), p.47.

Google Scholar

[8] A. Kubacka, G. Colón, M. Fernández-García, et al. Appl. Catal. B: Environ. Vol. 95(2010), p.238.

Google Scholar

[9] S. Izadyar, S. Fatemi, T. Mousavand. Mater. Res. Bull. Vol. 48(2013), p.3196.

Google Scholar

[10] T. H. Kim, V. Rodríguez-González, G. Gyawali, et al. Catal. Today Vol. 212(2013), p.75.

Google Scholar

[11] D. Dolat, S. Mozia, B. Ohtani, et al. Chem. Eng. J. Vol. 225(2013), p.358.

Google Scholar

[12] Y. Cong, J. L. Zhang, F. Chen, J. Phys. Chem. C Vol. 111(2007), p.10618.

Google Scholar

[13] X. Li, Z. M. Chen, Y. C. Shi, et al. Powder Technol. Vol. 207(2011), p.165.

Google Scholar

[14] W. X. Liu, J. Ma, W. B. Cao, et al. Res. Chem. Intermed. Vol. 35(2009), p.321.

Google Scholar

[15] J. Moser, M. Grtäzel, Helv. Chim. Acta. Vol. 70(1987), p.1596.

Google Scholar

[16] Md. Abdulla-Al-Mamun, Y. Kusumoto, Md. S. Islam. J. Mater. Chem. Vol. 22(2012), p.5460.

Google Scholar

[17] J. Wang, D. N. Tafen, J. P. Lewis, J. Am. Chem. Soc. Vol. 131(2009), p.12290.

Google Scholar

[18] M. Khan, J. N. Xu, N. Chen, W. B. Cao, J. Alloys. Compd. Vol. 51(2012), p.539.

Google Scholar

[19] X. X. Yang, C. D. Cao, L. Erickson, et al. Appl. Catal. B Vol. 91(2009), p.657.

Google Scholar

[20] S. M. Oh, S. S. Kim, J. E. Lee, et al. Thin Solid Films. Vol. 435(2003), p.252.

Google Scholar