Development of MTA/HAp Biomaterials for Use in Endodontics

Article Preview

Abstract:

This work aims to conduct a study of development and characterization of a new endodontic biociment, the MTA/HAp. To this was used MTA Angelus ® and a HAp synthesized in the laboratory in the proportions by weight 99% MTA/1% HAp (BIOC 1) and 95% MTA/5% HAp (BIOC 5), where the hydroxyapatite was added in order to introduce MTA to the characteristic of osteoconduction. The tests for the characterization of new cement were: X-ray diffraction, scanning electron microscopy and radiographic appearance. The results showed that the new developed biociments were obtained efficiently, since they showed the same crystalline phases of its starting materials (mineral trioxide aggregate and hydroxyapatite), with a morphology consisting of agglomerates of homogeneous distribution of irregular size and shape particles pre-sintered spherical and radiopacity feasible to be used in endodontics. Keywords: biomaterial, sealer, mineral trioxide aggregate, hydroxyapatite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Oliveira, L. S. A. F.; Oliveira, C. S.; Machado, A. P. L.; Rosa, F. P. Biomaterials for bone regeneration – Methods of analyses and future perspectives,. Revista de Ciências Médicas e Biológicas, 9 (1), pp.37-44, (2010).

Google Scholar

[2] Barros, C. M. B. Avaliação do selamento apical em retrobturação através do MTA incorporado com diferentes veículos e materiais,. 73f. Dissertação de mestrado apresentada a Universidade Potiguar, (2008).

Google Scholar

[3] Camilleri J. Hydration mechanisms of mineral trioxide aggregate,. Journal International Endodonty, 40, p.462, (2007).

Google Scholar

[4] Gandolfi, M. G.; Ciapettib, G.; Taddeic, P.; Perutb, F.; Tinti, A.; Cardoso, M. V.; Meerbeekd, B. V.; Prati, C. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation,. Dental Materials, 26, pp.974-992, (2010).

DOI: 10.1016/j.dental.2010.06.002

Google Scholar

[5] McNamara, R. P.; Henry, M. A.; Schindler, W. G.; Hargreaves, K. M. Biocompatibility of Accelerated Mineral Trioxide Aggregate in a Rat Model,. Journal of Endodontics, 36 (11), pp.1851-1855, (2010).

DOI: 10.1016/j.joen.2010.08.021

Google Scholar

[6] Torkittikul, P.; Chaipanich, A. Optimization of calcium chloride content on bioactivity and mechanical properties of White Portland cement,. Materials Science & Engineering: C, 32 (2), pp.282-289, (2012).

DOI: 10.1016/j.msec.2011.10.030

Google Scholar

[7] Legeros, R. Z. Properties of osteoconductive biomaterials: calcium phosphates,. Clinical Orthopaedics and Related Research, 1 (395), p.8198, (2002).

DOI: 10.1097/00003086-200202000-00009

Google Scholar

[8] Peña, J.; Vallet-Regi, M. Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique,. Journal of the European Ceramic Society, 23, pp.1687-1696, (2003).

DOI: 10.1016/s0955-2219(02)00369-2

Google Scholar

[9] Oliveira, T. C. Avaliação histológica do cimento de fosfato de cálcio (CFC) reforçado por fibras implantado supra-corticalmente em fêmur de ratos,. 52f. Tese de doutorado apresentada ao Programa de Pós-Graduação em Odontologia da Faculdade de Odontologia da Pontifícia Universidade Católica do Rio Grande do Sul, (2009).

DOI: 10.24873/j.rpemd.2018.11.236

Google Scholar

[10] Neto, F. A. D. Avaliação do cimento de alfa-fosfato tricálcico em artrodeses tarsocrurais experimentais em cães,. 83f. Tese de doutorado apresentada ao Curso de Pós-graduação em Medicina Veterinária da Faculdade de Ciências Agrárias e Veterinárias do Campus de Jaboticabal UNESP. Jaboticabal/SP, (2007).

DOI: 10.5433/1679-0359.2020v41n6supl2p3107

Google Scholar

[11] Kusrini, E.; Sontang, M. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite,. Radiation Physics and Chemistry, 81 (2), pp.118-125, (2012).

DOI: 10.1016/j.radphyschem.2011.10.006

Google Scholar

[12] Oliveira, M. G.; Xavier, C. B.; Demarco, F. F.; Pinheiro, A. L. B.; Costa, A. T.; Pozza, D. H. Comparative chemical study of MTA and portland cements. Brazilian Dental Journal, 18 (1), pp.3-7, (2007).

DOI: 10.1590/s0103-64402007000100002

Google Scholar

[13] Rigo, E. C. S.; Gehrke, S. A.; Carbonari, M. Síntese e caracterização de hidroxiapatita obtida pelo método da precipitação,. Revista Dental Press Periodontia Implantol, 1 (3), pp.39-50, (2007).

Google Scholar

[14] Leeke, G. A.; Salimi, M. N.; Bridson, R. H.; Grover, L. M. Effect of processing conditions on the formation of hydroxyapatite nanoparticles,. Powder Technology, 218, pp.109-118, (2012).

DOI: 10.1016/j.powtec.2011.11.049

Google Scholar