Clay Intercalated PVA-Nafion Bipolymer Matrix as Proton Conducting Nanocomposite Membrane for PEM Fuel Cells

Article Preview

Abstract:

The amino functionalized magnesium phyllosilicate clay (AC) intercalated over PVA-Nafion hybrid nanocomposite membranes were prepared by sol-gel method. The free standing membranes were obtained by solution recasting. The composition of clay materials such as AC and montmorillonite (MMT) was varied between 2-10 wt.% with respect to PVA-Nafion content. The molecular interactions and surface morphology of nanocomposite membranes were investigated by FT-IR and SEM analyses respectively. The thermal and mechanical stabilities of nanocomposite membranes were studied using TGA and Nanoindentation techniques. For 6 wt. % AC/PVA-Nafion, TGA results showed no appreciable mass change up to 380 °C and hardness calculated from nanoindentation studies was nearly 30 % higher than the other compositions. An improved conductivity was obtained for 6 wt. % AC/PVA-Nafion (1.4×10-2 S/cm) compared to pure Nafion (1.2×10-2 S/cm) and PVA-Nafion and MMT/PVA-Nafion composite membranes. From these studies, we observed that 6 wt. % AC/PVA-Nafion membrane possessed a good conductivity with higher thermal and mechanical stabilities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-168

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, J. H. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci. 37 (2012) 842-869.

DOI: 10.1016/j.progpolymsci.2011.11.002

Google Scholar

[2] A. Okada, A. Usuki, Twenty years of polymer-clay nanocomposites, Macromol. Mater. Eng. 291 (2006) 1449-1476.

DOI: 10.1002/mame.200600260

Google Scholar

[3] N. W. Deluca, Y. A. Elabd, Nafion®/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties, J. Membr. Sci. 282 (2006) 217-224.

DOI: 10.1016/j.memsci.2006.05.025

Google Scholar

[4] A. K. Sahu, S. Pitchumani, P. Sridhar, A. K. Shukla, Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview, Bull. Mater. Sci. 32 (2009) 285-294.

DOI: 10.1007/s12034-009-0042-8

Google Scholar

[5] B. Viswanathan, M. Helen, Is Nafion, the only choice?, Bull. Catal. Soc. India, 6 (2007) 50-66.

Google Scholar

[6] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 104 (2004) 4587-4612.

DOI: 10.1021/cr020711a

Google Scholar

[7] B. Dong, L. Gwee, D. S. Cruz, K. I. Winey, Y. A. Elabd, Super proton conductive high-purity Nafion nanofibers, Nano Lett. 10 (2010) 3785-3790.

DOI: 10.1021/nl102581w

Google Scholar

[8] M. S. Kang, J. H. Kim, J. Won, S. H. Moon, Y. S. Kang, Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells, J. Membr. Sci. 247 (2005) 127-135.

DOI: 10.1016/j.memsci.2004.09.017

Google Scholar

[9] S. Molla, V. Compan, E. Gimenez, A. Blazquez, I. Urdanpilleta, Novel ultrathin composite membranes of Nafion/PVA for PEMFCs, Int. J. Hydrogen Energy, 36 (2011) 9886-9895.

DOI: 10.1016/j.ijhydene.2011.05.074

Google Scholar

[10] Z. G. Shao, X. Wang, I. M. Hsing, Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell, J. Membr. Sci. 210 (2002) 147-153.

DOI: 10.1016/s0376-7388(02)00386-1

Google Scholar

[11] B. P. Tripathi, V. K. Shahi, Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci. 36 (2011) 945-979.

DOI: 10.1016/j.progpolymsci.2010.12.005

Google Scholar

[12] B. Narayanamoorthy, K. K. R. Datta, M. Eswaramoorthy, S. Balaji, Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells, ACS Appl. Mater. Interfaces 4 (2012) 3620-3627.

DOI: 10.1021/am300697q

Google Scholar

[13] B. Narayanamoorthy, K. K. R. Datta, S. Balaji, Kinetics and mechanism of electrochemical oxygen reduction using Pt/Clay/Nafion catalyst layer for polymer electrolyte membrane fuel cells, J. Colloid Interface Sci. 387 (2012) 213-220.

DOI: 10.1016/j.jcis.2012.08.002

Google Scholar

[14] D. T. Boutry, A. D. Geyer, L. Guetaz, O. Diat, G. Gebel, Structural study of zirconium phosphate-Nafion hybrid membranes for high-temperature proton exchange membrane fuel cell applications, Macromolecules, 40 (2007) 8259-8264.

DOI: 10.1021/ma0706576

Google Scholar