Enhancement of CdO/ZnO/PVC Nanocomposites Behavior on Photo-Catalytic Degradation of Congo-Red Dye under UV Light Irradiation

Article Preview

Abstract:

nanoCdO/ZnO/PVC composite thin films were prepared by simple solution cast method, using tetra hydrofuran as solvent. nanoCdO/ZnO/PVC composite thin films were irradiated by UV light at the range of 365 nm, 312 nm, and 254 nm. The photo-catalytic activity of CdO/ZnO/PVC was examined by photo-catalytic decolourization of congo-red in aqueous solution. nanoCdO/ZnO/PVC composite film exhibited higher photo-catalytic activity under UV light radiation at 365 nm rather than 312 nm & 254 nm. After 90 minutes irradiation by UV light almost 95% congo-red got decolorized. FT-IR studies confirm the complexation behavior of polymer with ZnO and CdO present in the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-99

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Ravelli, D. Dondi, M. Fagnonia and A. Albini, Photocatalysis. A Multifaceted concept for green chemistry, Chem. Soc. Rev. 38 (2009) 1999-(2011).

DOI: 10.1039/b714786b

Google Scholar

[2] W. Z. Tang, H. An, Chemosphere 31(1995) 4158-4170.

Google Scholar

[3] V. Subramanian, E.E. Wolf, P.V. Kamat, J. Phys. Chem. B 107 (2003) 7479.

Google Scholar

[4] D. Weissenberger, D. Gerthesen, A. Reiser, G. M. Prinz, M. Feneberg, K. Thonke, H. Zhou, J. Sartor, J. Fellert, C. Klingshim, H. Kalt, Appl. Phys. Lett. 94 (2009) 042107.

DOI: 10.1063/1.3075849

Google Scholar

[5] Z.L. Wang, X.Y. Kong, Y, Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang, Adv. Funct. Mater. 14(2004) 943.

Google Scholar

[6] Y. Li, X. Zhou, X. Hu, X. Zhao, P. Fang, J. Phys. Chem. C 113(2009) 16188.

Google Scholar

[7] Q. Xiang, G. F. Meng, H .B. Zhao, Y. Zhang, H. Li, W. J. Ma, J. Q. Xu, J. Phys. Chem. C 114 (2010) 943.

Google Scholar

[8] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14 (2002) 158.

Google Scholar

[9] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys, 98 (2005) 041301.

Google Scholar

[10] C. Shifu, Z. Wei, Z. Sujuan, L. Wei, Chem. Eng. J. 148 (2009) 263-269.

Google Scholar

[11] K. G. Kanade, B. B. Kale, J.O. Baeg, S. M. Lee, C. W, Lee, S. J. Moon, H. Chang, Mater. Chem. Phys. 102 (2007) 98-104.

Google Scholar

[12] C. Guillard, J. Disdier, C. Monnet, J. Dussaud, S. Malato, J. Blanco, M. I. Maladonado, and J. M. Herrmann, "Solar efficiency of a new deposited titania photocatalyst: cholorophenol, pesticide and dye removal applications, Appl. Catal. B. Environ, A. 46(2003).

DOI: 10.1016/s0926-3373(03)00264-9

Google Scholar

[13] T. Vicent, E. Guibal, Chitosan - supported palladium catalyst. I. Synthesis procedure , Ind. Eng. Res. Chem. 41(2002) 5158.

DOI: 10.1021/ie0201462

Google Scholar

[14] J.E. Hardy, S. Hubert, D. J. Macquarrie, A. J. Wilson, Chitosan based heterogeneous catalysts for Suzuki and Heck reactions", Green Chem. 6. (2004) 53.

DOI: 10.1039/b312145n

Google Scholar

[15] R. Scotti, I. R. Bellobona, C. Canavali, C. Cannas, M. Catti, M.D. Arienzo, A. Musinu, S. Polizzi, M. Sommariva, A. Testino, F. Morazzoni. Sol- gel pure and mixed phase titanium oxide for photocatalyytic purpose. Relations between phase composition, catalytic activity and charge trapped sites, Chem. Mater., 20(12), 4051-4061 (2008).

DOI: 10.1021/cm800465n

Google Scholar