V2O5-Photocatalyzed Oxidation of Diphenylamine

Article Preview

Abstract:

V2O5 catalyzes the oxidation of diphenylamine (DPA) to N-phenyl-p-benzoquinonimine (PBQ) in ethanol under UV light as well as under natural sunlight. The formation of PBQ was studied as a function of [DPA], V2O5-loading, airflow rate, light intensity, etc. Formation of PBQ is larger on illumination at 254 nm than at 365 nm and the catalyst is reusable. The mechanism of photocatalysis is discussed and the product formation analyzed using a kinetic model. ZnO and CdO enhance the V2O5-photocatalyzed formation of PBQ and the results are rationalized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-90

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Shiraishi, Y. Sugano, S. Tanaka, T. Hirai, One-pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles, Angew. Chem. Int. Ed. 49 (2010) 1656-1660.

DOI: 10.1002/anie.200906573

Google Scholar

[2] Q. Wang, M. Zhang, C. Chen, W. Ma, J. Zhao, Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Bronsted acid, Angew. Chem. Int. Ed. 49 (2010) 7976-7979.

DOI: 10.1002/anie.201001533

Google Scholar

[3] A. Zanella, Control of apple superficial scald and ripening - a comparison between 1-methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra low oxygen storage, Postharvest Biol. Technol. 27 (2003) 69-78.

DOI: 10.1016/s0925-5214(02)00187-4

Google Scholar

[4] Y.C. Chang, P.W. Chang, C.M. Wang, Energetic probing for the electron transfer reactions sensitized by 9, 10-dicyanoanthracene and 9-cyanoanthracene and their modified zeolite particles, J. Phys. Chem. B 107 (2003) 1628-1633.

DOI: 10.1021/jp021852j

Google Scholar

[5] T.S. Lin, J. Retsky, ESR studies of photochemical reactions of diphenylamines, phenothiazines, and phenoxazines, J. Phys. Chem. 90 (1986) 2687-2689.

DOI: 10.1021/j100403a026

Google Scholar

[6] C. Karunakaran, S. Karuthapandian, Solar photooxidation of diphenylamine, Sol. Energy Mater. Sol. Cells 90 (2006) 1928-(1935).

DOI: 10.1016/j.solmat.2005.12.003

Google Scholar

[7] K.L. Hardee, A.J. Bard, Semiconductor electrodes: X _Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions, J. Electrochem. Soc. 124 (1977) 215-224.

DOI: 10.1149/1.2133269

Google Scholar

[8] D.M. Adams, J.B. Raynor, Advanced Practical Inorganic Chemistry, John Wiley, New York, (1965).

Google Scholar

[9] S. Puri, W.R. Bansal, K.S. Sidhu, Benzophenone-sensitized photooxidation of diphenylamine, Indian J. Chem. 11 (1973) 828.

Google Scholar

[10] W.R. Bansal, N. Ram, K.S. Sidhu, Reaction of singlet oxygen: part I – oxidation of diphenylamine with singlet oxygen (1Δg) produced in situ, Indian J. Chem. 14B (1976) 123-126.

DOI: 10.1002/chin.197628132

Google Scholar

[11] M.A. Fox, C.C. Chen, Mechanistic features of the semiconductor photocatalyzed olefin-to-carbonyl oxidative cleavage, J. Am. Chem. Soc. 103 (1981) 6757-6759.

DOI: 10.1021/ja00412a044

Google Scholar

[12] B. Ohtani, Photocatalysis A to Z - What we know and what we do not know in a scientific sense, J. Photochem. Photobiol. C 11 (2011) 157-178.

DOI: 10.1016/j.jphotochemrev.2011.02.001

Google Scholar

[13] C. Karunakaran, S. Senthilvalen, S. Karuthapandian, TiO2-photocatalyzed oxidation of aniline, J. Photochem. Photobiol. A 172 (2005) 207-213.

DOI: 10.1016/j.jphotochem.2004.12.010

Google Scholar

[14] L. Vincze, T.J. Kemp, Light flux and light flux density dependence of the photomineralization rate of 2, 4-dichlorophenol and chloroacetic acid in the presence of TiO2, J. Photochem. Photobiol. A 87 (1995) 257-260.

DOI: 10.1016/1010-6030(94)03985-4

Google Scholar

[15] C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, Nanostructures and optical, electrical, magnetic, and photocatalytic properties of hydrothermally and sonochemically prepared CuFe2O4/SnO2, RSC Adv. 3 (2013) 16728-16738.

DOI: 10.1039/c3ra41872c

Google Scholar

[16] M. Li, M.E. Noriega-Trevino, N. Nino-Martinez, C. Marambio-Jones, J. Wang, R. Damoiseause, F. Ruiz, E.M.V. Hock, Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions, Environ. Sci. Technol. 45 (2011).

DOI: 10.1021/es201675m

Google Scholar

[17] Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting materials, Am. Mineral. 85 (2000) 543-556.

DOI: 10.2138/am-2000-0416

Google Scholar

[18] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films, J. Phys. Chem. B 108 (2004).

DOI: 10.1021/jp031260g

Google Scholar