Lawson Cypress Leaf-Like ZnO Hierarchical Nanostructures by Self-Assembly

Article Preview

Abstract:

In this letter, Lawson cypress leaf-like ZnO hierarchical nanostructures with new and interesting morphology were synthesized by electrodeposition in aqueous solution of Zn (NO3)2 followed by annealing process, this structure was the first time appearing in ZnO nanostructure. The obtained Lawson cypress leaf-like ZnO hierarchical nanostructures were composed of ZnO nanoparticles with the grain size about 100~200 nm, were observed by scanning electron microscope (SEM), ZnO was detected by X-ray diffraction (XRD), and the highly crystalline structure was demonstrated by high-resolution transmission electron microscopy (HRTEM). Lawson cypress leaf-like ZnO hierarchical nanostructures, which are well-controlled in diameter, space and thickness, have potential applications in photoelectronic devices, sensors, solar cells and nanometer devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

131-135

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.L. Wang and Z.C. Kang: Functional and Smart Materials—Structural Evolution and Structure Analysis (Plenum Press, New York, 1998).

Google Scholar

[2] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov and S. Doğan: J. Appl. Phys. Vol. 98 (2005), p.041301.

Google Scholar

[3] D.C. Look: Mater. Sci. and Eng., B Vol. 80 (2001), p.383.

Google Scholar

[4] H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho and E.W. Seeling: Phys. Rev. Lett. Vol. 84 (2000), p.5584.

Google Scholar

[5] X.H. Sun, S. Lam, T.K. Sham, F. Heigl, A. Jürgensen and N.B. Wong: J. Phys. Chem. B Vol. 109 (2005), p.3120.

Google Scholar

[6] Y.C. Liu, Z.Z. Zhi, D.Z. Shen, Y.M. Lu and J.Y. Zhang: Thin Solid Films Vol. 414 (2002), p.170.

Google Scholar

[7] Z.X. Fu, B.X. Lin, G.H. Liao and Z.Q. Wu: J. Cryst. Growth Vol. 193 (1998), p.316.

Google Scholar

[8] S. Ohara, T. Mousavand, M. Umetsu, S. Takami, T. Adschiri and Y. Kuroki: Solid State Ionics Vol. 172 (2004), p.261.

DOI: 10.1016/j.ssi.2004.02.044

Google Scholar

[9] F.S. Wen, W.L. Li, J.H. Moon and J.H. Kim: Solid State Commun. Vol. 135 (2005), p.34.

Google Scholar

[10] Z.Y. Xiao, Y.C. Liu, L. Dong, C.L. Shao, J.Y. Zhang and Y.M. Lu: J. Colloid Interface Sci. Vol. 282 (2005), p.403.

Google Scholar

[11] Z. Wang, X.F. Qian, J. Yin and Z.K. Zhu: Langmuir Vol. 20 (2004), p.3441.

Google Scholar

[12] Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks and R.P.H. Chang: Chem. Mater. Vol. 17 (2005), p.1001.

Google Scholar

[13] O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park and O. Lopatiuk-Tirpak: Superlattices Microstruct. Vol. 43 (2008), p.292.

DOI: 10.1016/j.spmi.2007.12.003

Google Scholar

[14] X, Y, Gan, X.D. Gao, J.J. Qiu and X.M. Li: Appl. Surf. Sci. Vol. 254 (2008), p.3839.

Google Scholar

[15] C.D. Gu and T.Y. Zhang: Langmuir. Vol. 24 (2008), p.12010.

Google Scholar

[16] X.G. Wen, Y.T. Xie, M.W.C. Mak, K.Y. Cheung, X.Y. Li and R. Renneberg: Langmuir. Vol. 22 (2006), p.4836.

Google Scholar

[17] N. Zhang, K. Yu, Q. Li, Z.Q. Zhu and Q. Wan: J. Appl. Phys. Vol. 103 (2008), p.104305.

Google Scholar

[18] H.J. Fan, R. Scholz, F.M. Kolb and M. Zacharias: Appl. Phys. Lett. Vol. 85 (2004), p.4142.

Google Scholar

[19] G.R. Li, X.H. Lu, D.L. Qu, C.Z. Yao, F.L. Zheng and Q. Bu: J. Phys. Chem. C. Vol. 111 (2007), p.6678.

Google Scholar

[20] W.W. Guo, T.M. Liu, H.J. Zhang, R. Sun, Y. Chen and W. Zeng: Sens. Actuators, B Vols. 166-167 (2012), p.492.

Google Scholar

[21] F. Fang, D.X. Zhao, B.H. Li, Z.Z. Zhang, D.Z. Shen and X.H. Wang: Appl. Surf. Sci. Vol. 257 (2011), p.3374.

Google Scholar

[22] V. Pachauri, K. Kern and K. Balasubramanian: Chem. Phys. Lett. Vol. 498 (2010), p.317.

Google Scholar